FREE BOOKS

Author's List




PREV.   NEXT  
|<   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147  
148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   >>   >|  
brightness of a few modern light-sources are of interest. These are expressed in candles per square inch of projected area; that is, if a small hole in a sheet of metal is placed next to the light-source and the intensity of the light passing through this hole is measured, the brightness of the hole is easily determined in candles per square inch. BRIGHTNESS OF LIGHT-SOURCES IN CANDLES PER SQUARE INCH Kerosene flame 5 to 10 Acetylene 30 to 60 Gas-mantle 30 to 500 Tungsten filament (vacuum) lamp 750 to 1,200 Tungsten filament (gas-filled) lamp 3,500 to 18,000 Magnetite arc 4,000 to 6,000 Carbon arc for search-lights 80,000 to 90,000 Flame arc for search-lights 250,000 to 350,000 Sun (computed mean) about 1,000,000 As the reflector of a search-light is an exceedingly important factor in obtaining high beam-intensities, considerable attention has been given to it since the practicable electric arc appeared. The parabolic mirror has the property of rendering parallel, or nearly so, the rays from a light-source placed at its focus. If the mirror subtends a large angle at the light-source, a greater amount of light is intercepted and rendered parallel than in the case of smaller subtended angles; hence, mirrors are large and of as short focus as practicable. Search-light projectors direct from 30 to 60 per cent. of the available light into the beam, but with lens systems the effective angle is so small that a much smaller percentage is delivered in the beam. Mangin in 1874 made a reflector of glass in which both outer and inner surfaces were spherical but of different radii of curvature, so that the reflector was thicker in the middle. This device was "silvered" on the outside and the refraction in the glass, as the light passed through it to the mirror and back again, corrected the spherical aberration of the mirrored surface. These have been extensively used. Many combinations of curved surfaces have been developed for special projection purposes, but the parabolic mirror is still in favor for powerful search-lights. The tip of the positive carbon is placed at its focus and the effective angle in which light is intercepted by the mirror is generally about 125 degrees. Within this angle is i
PREV.   NEXT  
|<   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147  
148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   >>   >|  



Top keywords:
mirror
 

search

 

source

 

lights

 

reflector

 
surfaces
 
spherical
 

Tungsten

 
filament
 

smaller


intercepted

 

parallel

 
parabolic
 

effective

 
practicable
 

candles

 
square
 
brightness
 

projectors

 

direct


powerful

 

systems

 

purposes

 

Search

 

subtended

 

angles

 

degrees

 

Within

 

generally

 

carbon


mirrors

 
positive
 

percentage

 

thicker

 

middle

 
aberration
 

curvature

 
surface
 

mirrored

 
device

passed
 

corrected

 
silvered
 
special
 

Mangin

 

projection

 
refraction
 

delivered

 
developed
 

curved