FREE BOOKS

Author's List




PREV.   NEXT  
|<   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86  
87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   >>   >|  
only in the horizontal direction. In the same manner the luminous intensities of light-sources until a short time ago were expressed in candles as measured in a certain direction. Incandescent lamps were rated in terms of mean horizontal candles, which would be satisfactory if the luminous intensity were the same in all directions, but it is not. Therefore, the candle-power in one direction does not give a measure of the total light-output. If a source of light has a luminous intensity of one candle in all directions, the illumination at a distance of one foot in any direction is said to be a foot-candle. This is the unit of illumination intensity. A lumen is the quantity of light which falls on one square foot if the intensity of illumination is one foot-candle. It is seen that the area of a sphere with a radius of one foot is 4 pi or 12.57 square feet; therefore, a light-source having a luminous intensity of one candle in all directions emits 12.57 lumens. This is the satisfactory unit, for it measures total quantity of light, and luminous efficiencies may be expressed in terms of lumens per watt, lumens per cubic foot of gas per hour, etc. Of course, the efficiencies of light-sources are usually of interest to the consumer if they are expressed in terms of cost. But from a practical point of view there are many elements which combine to make another important factor, namely, satisfactoriness. Therefore, the efficiency of artificial lighting from the standpoint of the consumer should be the ratio of satisfactoriness to cost. However, the scientist is interested chiefly in the efficiency of the light-source which may be expressed in lumens per watt, or the amount of light obtained from a given rate of consumption or of emission of energy. This method of rating light-sources penalizes those radiating considerable energy which does not produce the sensation of light or which at best is of wave-lengths that are inefficient in this respect. That radiant energy which is wholly of a wave-length of maximum visibility, or, in other words, excites the sensation of yellow-green, is the most efficient in producing luminous sensation. Of course, no illuminants are available which approach this theoretical ideal and it is not likely that this would be a practical ideal. Under monochromatic yellow-green light the magical drapery of color would disappear and the surroundings would be a monochrome of shades of this hue. Having no c
PREV.   NEXT  
|<   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86  
87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   >>   >|  



Top keywords:
luminous
 

intensity

 
candle
 

lumens

 
direction
 
expressed
 
source
 

directions

 

illumination

 

sources


sensation

 

energy

 

efficiencies

 

quantity

 

square

 

yellow

 

efficiency

 

satisfactoriness

 

horizontal

 

candles


practical

 

consumer

 

Therefore

 

satisfactory

 
produce
 
considerable
 

radiating

 

lengths

 

respect

 

Having


inefficient

 
penalizes
 
rating
 

amount

 

chiefly

 

interested

 

However

 

scientist

 

obtained

 
method

emission
 
consumption
 

radiant

 

wholly

 
theoretical
 

approach

 

monochromatic

 

magical

 

disappear

 
surroundings