FREE BOOKS

Author's List




PREV.   NEXT  
|<   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122  
123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   >>   >|  
s, will continue to glow for a long time. Despite their brightness they will be cold to the touch. This phenomenon would be termed "photo-luminescence," although it is better known as "phosphorescence." It should be noted that the latter term was carelessly originated, for phosphorus has nothing to do with it. The glow of the Geissler tube or electrically excited gas at low pressure would be an example of "electro-luminescence." The luminosity of various salts in the Bunsen-flame is due to so-called luminescence and there are many other examples of light-production which are included in the same general class. Inasmuch as light is emitted from comparatively cold bodies in these cases, it is popularly known as "cold" light. There are many instances of light being emitted without being accompanied by appreciable amounts of invisible radiant energy and it is natural to hope for practical possibilities in this direction. As yet little is known regarding the efficiency of light-production by phosphorescence. The luminous efficiency of the radiant energy emitted by phosphorescent substances has been studied, but it seems strange that among the vast works on phosphorescent phenomena, scarcely any mention is made of the efficiency of producing light in this manner. For example, assume that phosphorescent zinc sulphide is excited by the light from a mercury-arc. All the energy falling upon it is not capable of exciting phosphorescence, as may be readily shown. Assuming that a known amount of radiant energy of a certain wave-length has been permitted to fall upon the phosphorescent material, then in the dark the latter may be seen to glow for a long time. An interesting point to investigate is the relation of the output to input; that is, the ratio of the total emitted light to the total exciting energy. This is a neglected aspect in the study of light-production by this means. The firefly has been praised far and wide as the ideal light-source. It is an efficient radiator of light, for its light is "cold"; that is, it does not appear to be accompanied by invisible radiant energy. But little is said about its efficiency as a light-producer. Who knows how much fuel its lighting-plant consumes? The chemistry of light-production by living organisms is being unraveled and this part of the phenomenon will likely be laid bare before long. For an equal amount of energy radiated, the firefly emits a great many times more light than th
PREV.   NEXT  
|<   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122  
123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   >>   >|  



Top keywords:

energy

 

phosphorescent

 

radiant

 
emitted
 

production

 
efficiency
 

phosphorescence

 

luminescence

 
amount
 
excited

accompanied

 

firefly

 
invisible
 
exciting
 
phenomenon
 

interesting

 

output

 

manner

 

relation

 
investigate

permitted

 
Assuming
 

readily

 

capable

 

falling

 

mercury

 
assume
 
material
 

length

 

sulphide


efficient

 

organisms

 

unraveled

 

living

 

chemistry

 

lighting

 

consumes

 
radiated
 

praised

 

neglected


aspect
 

source

 
producing
 
producer
 
radiator
 

possibilities

 

pressure

 
electrically
 
Geissler
 

electro