FREE BOOKS

Author's List




PREV.   NEXT  
|<   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85  
86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   >>   >|  
mitting only invisible infra-red energy and has an efficiency of zero as a producer of light. As it becomes hotter it begins to appear red, but as its temperature is raised it appears orange, until if it could be heated to the temperature of the sun, about 10,000 deg.F., it would appear white. All this time its luminous efficiency is increasing, because it is radiating not only an increasing percentage of visible radiant energy but an increasing amount of the most effective luminous energy. But even when it appears white, a large amount of the energy which it radiates is invisible infra-red and ultra-violet, which are ineffective in producing light, so at best the substance at this high temperature is inefficient as a light-producer. In this branch of the science of light-production substances are sought not only for their high melting-point, but for their ability to radiate selectively as much visible energy as possible and of the most luminous character. However, at best the present method of utilizing the temperature radiation of hot bodies has limitations. The luminous efficiencies of light-sources to-day are still very low, but great advances have been made in the past half-century. There must be some radical departures if the efficiency of light-production is to reach a much higher figure. A good deal has been said of the firefly and of phosphorescence. These light-sources appear to emit only visible energy and, therefore, are efficient as radiators of luminous radiant energy. But much remains to be unearthed concerning them before they will be generally applicable to lighting. If ultra-violet radiation is allowed to impinge upon a phosphorescent material, it will glow with a considerable brightness but will be cool to the touch. A substance of the same brightness by virtue of its temperature would be hot; hence phosphorescence is said to be "cold" light. An acquaintance with certain terms is necessary if the reader is to understand certain parts of the text. The early candle gradually became a standard, and uniform candles are still satisfactory standards where high accuracy is not required. Their luminous intensity and illuminating value became units just as the foot was arbitrarily adopted as a unit of length. The intensity of other light-sources was represented in terms of the number of candles or fraction of a candle which gave the same amount of light. But the luminous intensity of the candle was taken
PREV.   NEXT  
|<   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85  
86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   >>   >|  



Top keywords:

energy

 

luminous

 
temperature
 

increasing

 

sources

 
candle
 

amount

 
visible
 
intensity
 

efficiency


radiant
 

invisible

 

candles

 

substance

 

violet

 

producer

 

production

 

appears

 

radiation

 
phosphorescence

brightness
 

considerable

 

phosphorescent

 
generally
 
applicable
 

unearthed

 

remains

 
radiators
 

lighting

 

material


impinge
 

allowed

 

efficient

 
standard
 

arbitrarily

 

adopted

 

illuminating

 

length

 

fraction

 
number

represented

 
required
 

accuracy

 
reader
 
understand
 

acquaintance

 
satisfactory
 

standards

 

uniform

 
gradually