FREE BOOKS

Author's List




PREV.   NEXT  
|<   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54  
55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   >>   >|  
ough a distance equal to two-thirds of CB, making its own particular spherical wave according to what has been said before. This wave is then represented by the circumference SNR, the centre of which is A, and its semi-diameter equal to two-thirds of CB. Then if one considers in order the other pieces H of the wave AC, it appears that in the same time that the piece C reaches B they will not only have arrived at the surface AB along the straight lines HK parallel to CB, but that, in addition, they will have generated in the diaphanous substance from the centres K, partial waves, represented here by circumferences the semi-diameters of which are equal to two-thirds of the lines KM, that is to say, to two-thirds of the prolongations of HK down to the straight line BG; for these semi-diameters would have been equal to entire lengths of KM if the two transparent substances had been of the same penetrability. Now all these circumferences have for a common tangent the straight line BN; namely the same line which is drawn as a tangent from the point B to the circumference SNR which we considered first. For it is easy to see that all the other circumferences will touch the same BN, from B up to the point of contact N, which is the same point where AN falls perpendicularly on BN. It is then BN, which is formed by small arcs of these circumferences, which terminates the movement that the wave AC has communicated within the transparent body, and where this movement occurs in much greater amount than anywhere else. And for that reason this line, in accordance with what has been said more than once, is the propagation of the wave AC at the moment when its piece C has reached B. For there is no other line below the plane AB which is, like BN, a common tangent to all these partial waves. And if one would know how the wave AC has come progressively to BN, it is necessary only to draw in the same figure the straight lines KO parallel to BN, and all the lines KL parallel to AC. Thus one will see that the wave CA, from being a straight line, has become broken in all the positions LKO successively, and that it has again become a straight line at BN. This being evident by what has already been demonstrated, there is no need to explain it further. Now, in the same figure, if one draws EAF, which cuts the plane AB at right angles at the point A, since AD is perpendicular to the wave AC, it will be DA which will mark the ray of incident
PREV.   NEXT  
|<   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54  
55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   >>   >|  



Top keywords:

straight

 

circumferences

 

thirds

 

parallel

 

tangent

 

partial

 

figure

 

diameters

 

common

 

movement


transparent
 

circumference

 

represented

 
making
 

progressively

 

spherical

 

reached

 

reason

 
amount
 

surface


accordance

 

moment

 
propagation
 

angles

 

perpendicular

 
incident
 

explain

 

broken

 

positions

 

distance


successively
 

demonstrated

 
evident
 
greater
 

occurs

 

substances

 

lengths

 

entire

 

pieces

 

penetrability


generated
 

centre

 

diameter

 

considers

 
substance
 

reaches

 

diaphanous

 

appears

 

prolongations

 
formed