FREE BOOKS

Author's List




PREV.   NEXT  
|<   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91  
92   93   >>  
omposed of such spheroids, there is great reason to believe that the particles are shaped and ranged in the same way. [Illustration: {Pyramid and section of spheroids}] There is even probability enough that the prisms of this crystal are produced by the breaking up of pyramids, since Mr. Bartholinus relates that he occasionally found some pieces of triangularly pyramidal figure. But when a mass is composed interiorly only of these little spheroids thus piled up, whatever form it may have exteriorly, it is certain, by the same reasoning which I have just explained, that if broken it would produce similar prisms. It remains to be seen whether there are other reasons which confirm our conjecture, and whether there are none which are repugnant to it. [Illustration: {paralleloid arrangement of spheroids with planes of potential cleavage}] It may be objected that this crystal, being so composed, might be capable of cleavage in yet two more fashions; one of which would be along planes parallel to the base of the pyramid, that is to say to the triangle ABC; the other would be parallel to a plane the trace of which is marked by the lines GH, HK, KL. To which I say that both the one and the other, though practicable, are more difficult than those which were parallel to any one of the three planes of the pyramid; and that therefore, when striking on the crystal in order to break it, it ought always to split rather along these three planes than along the two others. When one has a number of spheroids of the form above described, and ranges them in a pyramid, one sees why the two methods of division are more difficult. For in the case of that division which would be parallel to the base, each spheroid would be obliged to detach itself from three others which it touches upon their flattened surfaces, which hold more strongly than the contacts at the edges. And besides that, this division will not occur along entire layers, because each of the spheroids of a layer is scarcely held at all by the 6 of the same layer that surround it, since they only touch it at the edges; so that it adheres readily to the neighbouring layer, and the others to it, for the same reason; and this causes uneven surfaces. Also one sees by experiment that when grinding down the crystal on a rather rough stone, directly on the equilateral solid angle, one verily finds much facility in reducing it in this direction, but much difficulty afterwards in pol
PREV.   NEXT  
|<   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91  
92   93   >>  



Top keywords:
spheroids
 

crystal

 

planes

 

parallel

 

pyramid

 
division
 

Illustration

 

composed

 

reason

 

prisms


difficult

 

surfaces

 

cleavage

 

obliged

 
touches
 

detach

 

ranges

 
number
 
flattened
 

methods


spheroid
 

entire

 
directly
 

equilateral

 

grinding

 

uneven

 

experiment

 

difficulty

 

direction

 

reducing


verily

 
facility
 
striking
 

layers

 

strongly

 

contacts

 

scarcely

 

adheres

 

readily

 

neighbouring


surround

 

triangle

 

interiorly

 

figure

 
pyramidal
 

pieces

 

triangularly

 
explained
 
reasoning
 

exteriorly