FREE BOOKS

Author's List




PREV.   NEXT  
|<   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   >>  
use CL is the sine of the complement of the angle LCM, which is 6 degrees 40 minutes. And since the angle LCD is 45 degrees 20 minutes, being equal to GCS, the side LD is found to be 100,486: whence deducting ML 11,609 there will remain MD 88,877. Now as CD (which was 141,289) is to DM 88,877, so will CP 105,032 be to PE 66,070. But as the rectangle MEH (or rather the difference of the squares on CM and CE) is to the square on MC, so is the square on PE to the square on C_g_; then also as the difference of the squares on DC and CP to the square on CD, so also is the square on PE to the square on _g_C. But DP, CP, and PE are known; hence also one knows GC, which is 98,779. _Lemma which has been supposed_. If a spheroid is touched by a straight line, and also by two or more planes which are parallel to this line, though not parallel to one another, all the points of contact of the line, as well as of the planes, will be in one and the same ellipse made by a plane which passes through the centre of the spheroid. Let LED be the spheroid touched by the line BM at the point B, and also by the planes parallel to this line at the points O and A. It is required to demonstrate that the points B, O, and A are in one and the same Ellipse made in the spheroid by a plane which passes through its centre. [Illustration] Through the line BM, and through the points O and A, let there be drawn planes parallel to one another, which, in cutting the spheroid make the ellipses LBD, POP, QAQ; which will all be similar and similarly disposed, and will have their centres K, N, R, in one and the same diameter of the spheroid, which will also be the diameter of the ellipse made by the section of the plane that passes through the centre of the spheroid, and which cuts the planes of the three said Ellipses at right angles: for all this is manifest by proposition 15 of the book of Conoids and Spheroids of Archimedes. Further, the two latter planes, which are drawn through the points O and A, will also, by cutting the planes which touch the spheroid in these same points, generate straight lines, as OH and AS, which will, as is easy to see, be parallel to BM; and all three, BM, OH, AS, will touch the Ellipses LBD, POP, QAQ in these points, B, O, A; since they are in the planes of these ellipses, and at the same time in the planes which touch the spheroid. If now from these points B, O, A, there are drawn the straight lines BK, ON, AR, thr
PREV.   NEXT  
|<   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   >>  



Top keywords:

spheroid

 

planes

 

points

 

square

 

parallel

 

straight

 
passes
 

centre


Ellipses

 

ellipse

 

cutting

 

ellipses

 
diameter
 

touched

 

degrees

 

minutes


difference

 
squares
 
centres
 

section

 

similar

 
Through
 

Illustration

 
disposed

similarly
 

angles

 

generate

 

complement

 
manifest
 

proposition

 

Ellipse

 

Further


Archimedes

 

Spheroids

 

Conoids

 

supposed

 

rectangle

 

required

 

demonstrate

 
remain

contact

 
deducting