FREE BOOKS

Author's List




PREV.   NEXT  
|<   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90  
91   92   93   >>  
ngles, and the sides a little folded inwards. The grains of gray salt which are formed from sea water affect the figure, or at least the angle, of the cube; and in the congelations of other salts, and in that of sugar, there are found other solid angles with perfectly flat faces. Small snowflakes almost always fall in little stars with 6 points, and sometimes in hexagons with straight sides. And I have often observed, in water which is beginning to freeze, a kind of flat and thin foliage of ice, the middle ray of which throws out branches inclined at an angle of 60 degrees. All these things are worthy of being carefully investigated to ascertain how and by what artifice nature there operates. But it is not now my intention to treat fully of this matter. It seems that in general the regularity which occurs in these productions comes from the arrangement of the small invisible equal particles of which they are composed. And, coming to our Iceland Crystal, I say that if there were a pyramid such as ABCD, composed of small rounded corpuscles, not spherical but flattened spheroids, such as would be made by the rotation of the ellipse GH around its lesser diameter EF (of which the ratio to the greater diameter is very nearly that of 1 to the square root of 8)--I say that then the solid angle of the point D would be equal to the obtuse and equilateral angle of this Crystal. I say, further, that if these corpuscles were lightly stuck together, on breaking this pyramid it would break along faces parallel to those that make its point: and by this means, as it is easy to see, it would produce prisms similar to those of the same crystal as this other figure represents. The reason is that when broken in this fashion a whole layer separates easily from its neighbouring layer since each spheroid has to be detached only from the three spheroids of the next layer; of which three there is but one which touches it on its flattened surface, and the other two at the edges. And the reason why the surfaces separate sharp and polished is that if any spheroid of the neighbouring surface would come out by attaching itself to the surface which is being separated, it would be needful for it to detach itself from six other spheroids which hold it locked, and four of which press it by these flattened surfaces. Since then not only the angles of our crystal but also the manner in which it splits agree precisely with what is observed in the assemblage c
PREV.   NEXT  
|<   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90  
91   92   93   >>  



Top keywords:
surface
 

flattened

 

spheroids

 

diameter

 

spheroid

 
observed
 

crystal

 

reason

 

neighbouring

 

pyramid


angles

 

figure

 

Crystal

 

corpuscles

 
composed
 

surfaces

 

parallel

 
greater
 
square
 

obtuse


equilateral
 

lightly

 
breaking
 

detach

 

needful

 

separated

 

polished

 

attaching

 

locked

 

precisely


assemblage

 
splits
 
manner
 

separate

 

broken

 

fashion

 

represents

 

produce

 

prisms

 

similar


separates

 

easily

 

touches

 

detached

 
particles
 

hexagons

 

straight

 
points
 
beginning
 

freeze