FREE BOOKS

Author's List




PREV.   NEXT  
|<   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110  
111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   >>   >|  
e borate of magnesia) give a clear bead with soda, though it becomes slightly turbid by cooling when saturated with magnesia, and crystallizes in large facets. Magnesia and its compounds give beads with borax and microcosmic salt similar to those of lime. By igniting magnesia or its compounds very strongly in the oxidizing flame, moistening with nitrate of cobalt, and re-igniting in the oxidation flame, they present, after a continued blowing, a pale flesh-color, which is more visible when cold. It is indispensable that the magnesia compounds should be completely white and free of colored substances, or the color referred to cannot be discerned. In general the reactions of magnesia before the blowpipe are not sufficient, and it will be necessary to confirm its presence or absence by aid of reagents applied in the wet way. THIRD GROUP.--THE EARTHS, ALUMINA, GLUCINA, YTTRIA, THORINA, AND ZIRCONIA. The substances of this group are distinguished from the preceding by their insolubility in water, in their pure or hydrated state--that they have no alkaline reaction upon litmus paper, nor form salts with carbonic acid. The earths are not volatile, and, in the pure state, are infusible. They cannot be reduced to the metallic state before the blowpipe. The organic salts are destroyed by ignition, while the earths are left in the pure state, mixed with charcoal, from the organic acids. The most of their neutral salts are insoluble in water; the soluble neutral salts change blue litmus paper to red, and lose their acids when ignited. (_a._) _Alumina_ (Al^{2}O^{3}).--This earth is one of our most common minerals. It occurs free in nature in many minerals, as sapphire, etc.; or in combination with sulphuric acid, phosphoric acid, and fluorine, and chiefly silicates. Pure alumina is a white crystalline powder, or yellowish-white, and amorphous when produced by drying the hydrate, separated chemically from its salts. Alumina is quite unalterable in the fire; the hydrate, however, losing its water at a low red heat. The neutral salts of alumina, with most acids, are insoluble in water. Those soluble in it have an acid reaction upon litmus paper, changing the blue into red. The sulphates of alumina eliminate water when heated in a glass tube closed at one end. By ignition, sulphurous acid (SO^{2}) is given off, which can be recognized by its smell, and by its acid reaction upon blue litmus paper, when a small strip of it mo
PREV.   NEXT  
|<   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110  
111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   >>   >|  



Top keywords:

magnesia

 
litmus
 

neutral

 

alumina

 

reaction

 

compounds

 
organic
 

substances

 

soluble

 

insoluble


ignition

 

blowpipe

 

Alumina

 
minerals
 
earths
 

hydrate

 

igniting

 

sulphates

 

heated

 

eliminate


changing
 

ignited

 
change
 

charcoal

 
destroyed
 
reduced
 

metallic

 

recognized

 

sulphurous

 
closed

fluorine
 
chemically
 
chiefly
 
phosphoric
 

sulphuric

 

unalterable

 

separated

 

silicates

 

powder

 
produced

amorphous

 

crystalline

 

drying

 
combination
 

common

 

yellowish

 

occurs

 
nature
 

sapphire

 

losing