FREE BOOKS

Author's List




PREV.   NEXT  
|<   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139  
140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   >>   >|  
ire and is converted with considerable intensity into the acids, producing white vapors. This is likewise the case if it is touched by a spark of fire from steel. The hydrate of the protoxide of tin can be ignited by the flame of a candle, and glows like tinder. ([beta].) _Sesquioxide of Tin_ (Sn^{2}O^{3}) is a greyish-brown powder. Its hydrate is white, with a yellow tinge. It is soluble in aqua ammonia and in hydrochloric acid; this solution forms with solution of gold the "purple of Cassius." ([gamma].) _Stannic Acid_ (peroxide, SnO^{2}).--This acid occurs in nature crystallized in quadro-octahedrons, of a brown or an intense black color, and of great hardness (tinstone). Artificially prepared, it is a white or yellowish-white powder. It exists in two distinct or isomeric modifications, one of which is insoluble in acids (natural tin-acid) while the other (tin-acid prepared in the wet way) is soluble in acids. By ignition the soluble acid is converted into the insoluble. Both modifications form hydrates. _Reactions before the Blowpipe._--Metallic tin melts easily. It is covered in the flame of oxidation into a yellowish-white oxide, which is carried off sometimes by the stream of air which propels the flame. In the reduction flame, and upon charcoal, melting tin retains its metallic lustre, while a thin sublimate is produced upon the charcoal. This sublimate is light-yellow while hot, and gives a strong light in the flame of oxidation, and turns white while cooling. This sublimate is found near to the metal, and cannot be volatilized in the oxidation flame. In the flame of reduction it is reduced to metallic tin. Sometimes this incrustation is so imperceptible that it can scarcely be distinguished from the ashes of the charcoal. If such be the case, moisten it with a solution of cobalt, and expose it to the flame of oxidation, when the sublimate will exhibit, after cooling, a bluish-green color. Protoxide of tin takes fire in the flame of oxidation, and burns with flame and some white vapor into tin acid, or stannic acid. In a strong and continued reduction flame, it may be reduced to metal, when the same sublimate above mentioned is visible. The sesquioxide of tin behaves as the above. Stannic acid, heated in the flame of oxidation, does not melt and is not volatilized, but produces a strong light, and appears yellowish while hot, but changing as it cools to a dirty-yellow white color. In a strong and con
PREV.   NEXT  
|<   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139  
140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   >>   >|  



Top keywords:

oxidation

 

sublimate

 

strong

 

solution

 

yellowish

 

charcoal

 

soluble

 

reduction

 
yellow
 

prepared


modifications

 

Stannic

 
reduced
 
metallic
 

cooling

 

volatilized

 

insoluble

 

hydrate

 

converted

 

powder


Sometimes
 

incrustation

 

vapors

 
likewise
 

imperceptible

 

distinguished

 

scarcely

 

lustre

 

melting

 

retains


produced

 

touched

 

moisten

 
producing
 

considerable

 
heated
 

behaves

 
sesquioxide
 
mentioned
 

visible


changing
 

produces

 
appears
 

intensity

 

bluish

 

exhibit

 

expose

 

Protoxide

 
continued
 

stannic