FREE BOOKS

Author's List




PREV.   NEXT  
|<   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37  
38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   >>   >|  
Annular) 18 11 7 42 -------------------------------------------- (Mag. Annular) 1901 Nov. 11 7 19 a.m. (civil time) +1 m. The foregoing does not by any means exhaust all that can be said respecting the Saros even on the popular side. If the Saros comprised an exact number of days, each eclipse of a second Saros series would be visible in the same regions of the Earth as the corresponding eclipse in the previous series. But since there is a surplus fraction of nearly one-third of a day, each subsequent eclipse will be visible in another region of the Earth, which will be roughly a third of the Earth's circumference in longitude backwards (_i.e._ about 120 deg. to the W.), because the Earth itself will be turned on its axis one-third forwards. After what has been said as to the Saros and its use it might be supposed that a correct list of eclipses for 18.03 years would suffice for all ordinary purposes of eclipse prediction, and that the sequence of eclipses at any future time might be ascertained by adding to some one eclipse which had already happened so many Saros periods as might embrace the years future whose eclipses it was desired to study. This would be true in a sense, but would not be literally and effectively true, because corresponding eclipses do not recur exactly under the same conditions, for there are small residual discrepancies in the times and circumstances affecting the real movements of the Earth and Moon and the apparent movement of the Sun which, in the lapse of years and centuries, accumulate sufficiently to dislocate what otherwise would be exact coincidences. Thus an eclipse of the Moon which in A.D. 565 was of 6 digits[7] was in 583 of 7 digits, and in 601 nearly 8. In 908 the eclipse became total, and remained so for about twelve periods, or until 1088. This eclipse continued to diminish until the beginning of the 15th century, when it disappeared in 1413. Let us take now the life of an eclipse of the Sun. One appeared at the North Pole in June A.D. 1295, and showed itself more and more towards the S. at each subsequent period. On August 27, 1367, it made its first appearance in the North of Europe; in 1439 it was visible all over Europe; in 1601, being its 19th appearance, it was central and annular in England; on May 5, 1818, it was visible in London, and again on May 15, 1836. Its three next appearances were on May 26, 1854, June 6, 1872, and June 17, 1890. At its
PREV.   NEXT  
|<   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37  
38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   >>   >|  



Top keywords:

eclipse

 

eclipses

 

visible

 

Europe

 

appearance

 
periods
 

future

 

subsequent

 
digits
 

Annular


series

 

accumulate

 

coincidences

 
sufficiently
 

beginning

 
dislocate
 

century

 

apparent

 
diminish
 

disappeared


centuries

 

movement

 

remained

 

twelve

 

continued

 

August

 

London

 

central

 
annular
 

England


appearances

 
appeared
 

showed

 

period

 

surplus

 

fraction

 

regions

 

previous

 

region

 

roughly


backwards

 

circumference

 

longitude

 
foregoing
 

comprised

 

number

 
popular
 
exhaust
 

respecting

 

turned