FREE BOOKS

Author's List




PREV.   NEXT  
|<   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130  
131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   >>   >|  
e a load of 6 pounds at _W_, but the hand will have to pull downward 6 feet at _P_ in order to raise the load at _W_ 1 foot. If 8 pulleys were used, a force equivalent to one eighth of the load would suffice to move _W_, but this force would have to be exerted over a distance 8 times as great as that through which _W_ was raised. [Illustration: FIG. 111.--An effective arrangement of pulleys known as block and tackle.] 163. Practical Application. In our childhood many of us saw with wonder the appearance and disappearance of flags flying at the tops of high masts, but observation soon taught us that the flags were raised by pulleys. In tenements, where there is no yard for the family washing, clothes often appear flapping in mid-air. This seems most marvelous until we learn that the lines are pulled back and forth by pulleys at the window and at a distant support. By means of pulleys, awnings are raised and lowered, and the use of pulleys by furniture movers, etc., is familiar to every wide-awake observer on the streets. 164. Wheel and Axle. The wheel and axle consists of a large wheel and a small axle so fastened that they rotate together. [Illustration: FIG. 112.--The wheel and axle.] When the large wheel makes one revolution, _P_ falls a distance equal to the circumference of the wheel. While _P_ moves downward, _W_ likewise moves, but its motion is upward, and the distance it moves is small, being equal only to the circumference of the small axle. But a small force at _P_ will sustain a larger force at _W_; if the circumference of the large wheel is 40 inches, and that of the small wheel 10 inches, a load of 100 at _W_ can be sustained by a force of 25 at _P_. The increase in force of the wheel and axle depends upon the relative size of the two parts, that is, upon the circumference of wheel as compared with circumference of axle, and since the ratio between circumference and radius is constant, the ratio of the wheel and axle combination is the ratio of the long radius to the short radius. For example, in a wheel and axle of radii 20 and 4, respectively, a given weight at _P_ would balance 5 times as great a load at _W_. 165. Application. _Windlass, Cogwheels._ In the old-fashioned windlass used in farming districts, the large wheel is replaced by a handle which, when turned, describes a circle. Such an arrangement is equivalent to wheel and axle (Fig. 112); the capstan used on shipboard for raising
PREV.   NEXT  
|<   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130  
131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   >>   >|  



Top keywords:

pulleys

 

circumference

 
distance
 

raised

 

radius

 

equivalent

 

arrangement

 

Illustration

 

Application

 

downward


inches

 
fastened
 
increase
 

sustained

 
larger
 
sustain
 

upward

 

motion

 

revolution

 

rotate


consists

 

likewise

 

farming

 

districts

 

replaced

 

handle

 

windlass

 

fashioned

 

Windlass

 
Cogwheels

turned

 

capstan

 
shipboard
 

raising

 

describes

 
circle
 

constant

 
combination
 

compared

 
relative

weight

 

balance

 

depends

 
pulled
 

childhood

 

Practical

 
tackle
 

appearance

 

observation

 
taught