FREE BOOKS

Author's List




PREV.   NEXT  
|<   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139  
140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   >>   >|  
through it into _D_ and forces up the piston. This up-and-down motion of the piston causes continuous rotation of the wheel _L_. If the fire is hot, steam is formed quickly, and the piston moves rapidly; if the fire is low, steam is formed slowly, and the piston moves less rapidly. The steam engine as seen on our railroad trains is very complex, and cannot be discussed here; in principle, however, it is identical with that just described. Figure 129 shows a steam harvester at work on a modern farm. [Illustration: FIG. 129.--Steam harvester at work.] In both engine and turbine the real source of power is not the steam but the fuel, such as coal or oil, which converts the water into steam. 180. Gas Engines. Automobiles have been largely responsible for the gas engine. To carry coal for fuel and water for steam would be impracticable for most motor cars. Electricity is used in some cars, but the batteries are heavy, expensive, and short-lived, and are not always easily replaceable. For this reason gasoline is extensively used, and in the average automobile the source of power is the force generated by exploding gases. It was discovered some years ago that if the vapor of gasoline or naphtha was mixed with a definite quantity of air, and a light was applied to the mixture, an explosion would result. Modern science uses the force of such exploding gases for the accomplishment of work, such as running of automobiles and launches. In connection with the gasoline supply is a carburetor or sprayer, from which the cylinder _C_ (Fig. 130) receives a fine mist of gasoline vapor and air. This mixture is ignited by an automatic, electric sparking device, and the explosion of the gases drives the piston _P_ to the right. In the 4-cycle type of gas engines (Fig. 130)--the kind used in automobiles--the four strokes are as follows: 1. The mixture of gasoline and air enters the cylinder as the piston moves to the right. 2. The valves being closed, the mixture is compressed as the piston moves to the left. 3. The electric spark ignites the compressed mixture and drives the piston to the right. 4. The waste gas is expelled as the piston moves to the left. The exhaust valve is then closed, the inlet valve opened, and another cycle of four strokes begins. [Illustration: FIG. 130.--The gas engine.] The use of gasoline in launches and automobiles is familiar to many. Not only are launches and automobiles making use of gas pow
PREV.   NEXT  
|<   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139  
140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   >>   >|  



Top keywords:

piston

 

gasoline

 
mixture
 
engine
 

automobiles

 
launches
 

strokes

 
drives
 

source

 

electric


exploding
 

explosion

 

cylinder

 
Illustration
 
closed
 

rapidly

 
formed
 

harvester

 

compressed

 
running

connection

 
accomplishment
 
sprayer
 

carburetor

 

begins

 

supply

 

familiar

 

applied

 
forces
 

making


quantity

 

Modern

 

science

 

result

 
ignites
 

definite

 

valves

 
enters
 

engines

 
ignited

automatic

 

receives

 

sparking

 

exhaust

 
expelled
 
device
 

opened

 
average
 
turbine
 
modern