FREE BOOKS

Author's List




PREV.   NEXT  
|<   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32  
33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   >>   >|  
ing a bad conductor of electricity: it becomes positively electrified by friction. The electrical resistance is about that of ordinary glass, and is diminished by one-half during exposure by Rontgen rays; the dielectric constant (16) is greater than that which should correspond to the specific gravity. The phosphorescence produced by friction has been known since the time of Robert Boyle (1663); the diamond becomes luminous in a dark room after exposure to sunlight or in the presence of radium; and many stones phosphoresce beautifully (generally with a pale green light) when subjected to the electric discharge in a vacuum tube. Some diamonds are more phosphorescent than others, and different faces of a crystal may display different tints. The combustibility of the diamond was predicted by Sir Isaac Newton on account of its high refractive power; it was first established experimentally by the Florentine Academicians in 1694. In oxygen or air diamond burns at about 850 deg., and only continues to do so if maintained at a high temperature; but in the absence of oxidising agents it may be raised to a much higher temperature. It is, however, infusible at the temperature of the electric arc, but becomes converted superficially into graphite. Experiments on the combustion of diamond were made by Smithson Tennant (1797) and Sir Humphry Davy (1816), with the object of proving that it is pure carbon; they showed that burnt in oxygen it yields exactly the same amount of carbon dioxide as that produced by burning the same weight of carbon. Still more convincing experiments were made by A. Krause in 1890. Similarly Guyton de Morveau showed that, like charcoal, diamond converts soft iron into steel. Diamond is insoluble in acid and alkalis, but is oxidised on heating with potassium bichromate and sulphuric acid. Bort (or Boart) is the name given to impure crystals or fragments useless for jewels; it is also applied to the rounded crystalline aggregates, which generally have a grey colour, a rough surface, often a radial structure, and are devoid of good cleavage. They are sometimes spherical ("shot bort"). Carbonado or "black diamond," found in Bahia (also recently in Minas Geraes), is a black material with a minutely crystalline structure somewhat porous, opaque, resembling charcoal in appearance, devoid of cleavage, rather harder than diamond, but of less specific gravity; it sometimes displays a rude cubic crystalline form. The
PREV.   NEXT  
|<   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32  
33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   >>   >|  



Top keywords:
diamond
 

crystalline

 

carbon

 

temperature

 

cleavage

 

structure

 
devoid
 

electric

 

generally

 

charcoal


oxygen

 

produced

 

exposure

 

showed

 
friction
 

specific

 

gravity

 

Morveau

 

converts

 

Tennant


insoluble
 

Smithson

 

Diamond

 
object
 
Humphry
 

Guyton

 

convincing

 

yields

 

weight

 

burning


amount

 

experiments

 

proving

 

dioxide

 

Similarly

 

Krause

 

recently

 
Geraes
 

material

 

Carbonado


spherical

 

minutely

 
displays
 
harder
 

porous

 

opaque

 
resembling
 

appearance

 
radial
 

impure