FREE BOOKS

Author's List




PREV.   NEXT  
|<   557   558   559   560   561   562   563   564   565   566   567   568   569   570   571   572   573   574   575   576   577   578   579   580   581  
582   583   584   585   586   587   588   589   590   591   592   593   594   595   596   597   598   599   600   601   602   603   604   605   606   >>   >|  
e radiation has been reduced to three-quarters, or 75 units; hence, the effect of the lessening of the radiation is to raise the temperature of each remaining inch not radiating to 125 degrees. If the radiating surface should be reduced to three-thirty-seconds of an inch, the temperature would reach 6400 degrees Fahr. To carry out this law to the best advantage in regard to platina, etc., then with a given length of wire to quadruple the heat we must lessen the radiating surface to one-quarter, and to do this in a spiral, three-quarters must be within the spiral and one-quarter outside for radiating; hence, a square wire or other means, such as a spiral within a spiral, must be used. These results account for the enormous temperature of the Electric Arc with one horse-power; as, for instance, if one horse-power will heat twelve inches of wire to 1000 degrees Fahr., and this is concentrated to have one-quarter of the radiating surface, it would reach a temperature of 4000 degrees or sufficient to melt it; but, supposing it infusible, the further concentration to one-eighth its surface, it would reach a temperature of 16,000 degrees, and to one-thirty-second its surface, which would be about the radiating surface of the Electric Arc, it would reach 64,000 degrees Fahr. Of course, when Light is radiated in great quantities not quite these temperatures would be reached. "Another curious law is this: It will require a greater initial battery to bring an iron wire of the same size and resistance to a given temperature than it will a platina wire in proportion to their specific heats, and in the case of Carbon, a piece of Carbon three inches long and one-eighth diameter, with a resistance of 1 ohm, will require a greater battery power to bring it to a given temperature than a cylinder of thin platina foil of the same length, diameter, and resistance, because the specific heat of Carbon is many times greater; besides, if I am not mistaken, the radiation of a roughened body for heat is greater than a polished one like platina." Proceeding logically upon these lines of thought and following them out through many ramifications, we have seen how he at length made a filament of carbon of high resistance and small radiating surface, and through a concurrent investigation of the phenomena of high vacua and occluded gases was able to produce a true incandescent lamp. Not only was it a lamp as a mere article--a device to give light--
PREV.   NEXT  
|<   557   558   559   560   561   562   563   564   565   566   567   568   569   570   571   572   573   574   575   576   577   578   579   580   581  
582   583   584   585   586   587   588   589   590   591   592   593   594   595   596   597   598   599   600   601   602   603   604   605   606   >>   >|  



Top keywords:

surface

 
temperature
 

radiating

 

degrees

 
spiral
 

resistance

 
platina
 

greater

 

length

 

quarter


radiation

 

Carbon

 

reduced

 

Electric

 

specific

 

diameter

 

require

 
battery
 

inches

 

eighth


thirty
 

quarters

 
cylinder
 
produce
 

incandescent

 

device

 

article

 

proportion

 
roughened
 

ramifications


concurrent

 
thought
 

filament

 

carbon

 

polished

 

mistaken

 

Proceeding

 

phenomena

 

investigation

 

logically


occluded

 

supposing

 

quadruple

 

lessen

 

regard

 
advantage
 

square

 
effect
 

lessening

 

seconds