FREE BOOKS

Author's List




PREV.   NEXT  
|<   586   587   588   589   590   591   592   593   594   595   596   597   598   599   600   601   602   603   604   605   606   607   608   609   610  
611   612   613   614   615   616   617   618   619   620   621   622   623   624   625   626   627   628   629   630   631   632   633   634   635   >>   >|  
about five hundred vibrations per second by an auxiliary battery. Its vibrations were broken by means of a telegraph key into long and short periods, representing Morse characters, which were transmitted inductively from the train circuit to the pole line or vice versa, and received by the operator at the other end through a high-resistance telephone receiver inserted in the secondary circuit of the induction-coil. The accompanying diagrammatic sketch of a simple form of the system, as installed on a car, will probably serve to make this more clear. An insulated wire runs from the metallic layers on the roof of the car to switch S, which is shown open in the sketch. When a message is to be received on the car from a station more or less remote, the switch is thrown to the left to connect with a wire running to the telephone receiver, T. The other wire from this receiver is run down to one of the axles and there permanently connected, thus making a ground. The operator puts the receiver to his ear and listens for the message, which the telephone renders audible in the Morse characters. If a message is to be transmitted from the car to a receiving station, near or distant, the switch, S, is thrown to the other side, thus connecting with a wire leading to one end of the secondary of induction-coil C. The other end of the secondary is connected with the grounding wire. The primary of the induction-coil is connected as shown, one end going to key K and the other to the buzzer circuit. The other side of the key is connected to the transmitting battery, while the opposite pole of this battery is connected in the buzzer circuit. The buzzer, R, is maintained in rapid vibration by its independent auxiliary battery, B<1S>. When the key is pressed down the circuit is closed, and current from the transmitting battery, B, passes through primary of the coil, C, and induces a current of greatly increased potential in the secondary. The current as it passes into the primary, being broken up into short impulses by the tremendously rapid vibrations of the buzzer, induces similarly rapid waves of high potential in the secondary, and these in turn pass to the roof and thence through the intervening air by induction to the telegraph wire. By a continued lifting and depression of the key in the regular manner, these waves are broken up into long and short periods, and are thus transmitted to the station, via the wire, in Morse charact
PREV.   NEXT  
|<   586   587   588   589   590   591   592   593   594   595   596   597   598   599   600   601   602   603   604   605   606   607   608   609   610  
611   612   613   614   615   616   617   618   619   620   621   622   623   624   625   626   627   628   629   630   631   632   633   634   635   >>   >|  



Top keywords:

secondary

 
connected
 

circuit

 

battery

 
induction
 

buzzer

 
receiver
 

station

 

telephone

 

switch


message

 

transmitted

 

primary

 

current

 

vibrations

 

broken

 

induces

 
passes
 

potential

 

thrown


transmitting
 

received

 
operator
 
auxiliary
 

telegraph

 

characters

 

periods

 

sketch

 
maintained
 

vibration


pressed

 
manner
 

independent

 

opposite

 

grounding

 

leading

 

connecting

 

inductively

 

representing

 

charact


closed

 

regular

 

similarly

 

tremendously

 

impulses

 
intervening
 

continued

 
increased
 

greatly

 

hundred