FREE BOOKS

Author's List




PREV.   NEXT  
|<   359   360   361   362   363   364   365   366   367   368   369   370   371   372   373   374   375   376   377   378   379   380   381   382   383  
384   385   386   387   388   389   390   391   392   393   394   395   396   397   398   399   400   401   402   403   404   405   406   407   408   >>   >|  
essure flanged joints canvas inserted rubber gaskets. Size of Steam Lines--The factors affecting the proper size of steam lines are the radiation from such lines and the velocity of steam within them. As the size of the steam line increases, there will be an increase in the radiation.[79] As the size decreases, the steam velocity and the pressure drop for a given quantity of steam naturally increases. There is a marked tendency in modern practice toward higher steam velocities, particularly in the case of superheated steam. It was formerly considered good practice to limit this velocity to 6000 feet per minute but this figure is to-day considered low. In practice the limiting factor in the velocity advisable is the allowable pressure drop. In the description of the action of the throttling calorimeter, it has been demonstrated that there is no loss accompanying a drop in pressure, the difference in energy between the higher and lower pressures appearing as heat, which, in the case of steam flowing through a pipe, may evaporate any condensation present or may be radiated from the pipe. A decrease in pipe area decreases the radiating surface of the pipe and thus the possible condensation. As the heat liberated by the pressure drop is utilized in overcoming or diminishing the tendency toward condensation and the heat loss through radiation, the steam as it enters the prime mover will be drier or more highly superheated where high steam velocities are used than where they are lower, and if enough excess pressure is carried at the boilers to maintain the desired pressure at the prime mover, the pressure drop results in an actual saving rather than a loss. The whole is analogous to standard practice in electrical distributing systems where generator voltage is adjusted to suit the loss in the feeder lines. In modern practice, with superheated steam, velocities of 15,000 feet per minute are not unusual and this figure is very frequently exceeded. Piping System Design--With the proper size of pipe to be used determined, the most important factor is the provision for the removal of water of condensation that will occur in any system. Such condensation cannot be wholly overcome and if the water of condensation is carried to the prime mover, difficulties will invariably result. Water is practically incompressible and its effect when traveling at high velocities differs little from that of a solid body of equal weight, he
PREV.   NEXT  
|<   359   360   361   362   363   364   365   366   367   368   369   370   371   372   373   374   375   376   377   378   379   380   381   382   383  
384   385   386   387   388   389   390   391   392   393   394   395   396   397   398   399   400   401   402   403   404   405   406   407   408   >>   >|  



Top keywords:

pressure

 

condensation

 
practice
 

velocities

 

velocity

 

radiation

 
superheated
 
considered
 

carried

 

factor


higher
 
figure
 
minute
 

proper

 

increases

 

decreases

 
tendency
 

modern

 

voltage

 

adjusted


systems

 

generator

 

unusual

 

distributing

 

feeder

 

analogous

 

joints

 

flanged

 

boilers

 

excess


canvas

 

maintain

 

desired

 

frequently

 

standard

 
saving
 
results
 

actual

 

electrical

 

incompressible


effect
 
practically
 

invariably

 

result

 

traveling

 

weight

 
differs
 

difficulties

 
overcome
 

determined