FREE BOOKS

Author's List




PREV.   NEXT  
|<   378   379   380   381   382   383   384   385   386   387   388   389   390   391   392   393   394   395   396   397   398   399   400   401   402  
403   404   405   406   407   408   409   410   411   412   413   >>  
, it follows from the fact that the total amount of heat absorbed is equal to the heat received from radiation plus the heat removed from the gases by cooling from the temperature T_{1} to the temperature T_{2}, that _ _ | / T \ / t \ | E = 1600 | |----|^{4} - |----|^{4}| S^{1} + WC(T_{1} - T_{2}) |_\1000/ \1000/ _| This formula can be used for calculating the furnace temperature when E, t and T_{2} are known but it must be remembered that an assumption which is probably, in part at least, incorrect is implied in using it or in using any similar formula. Expressed in this way, however, it seems more rational than the one proposed a few years ago by Dr. Nicholson[88] where, in place of the surface exposed to radiation, he uses the grate surface and assumes the furnace gas temperature as equal to the fire temperature. If the heat transfer rate is taken as independent of the gas temperature and the heat absorbed by an element of the surface in a given time is equated to the heat given out from the gas passing over this surface in the same time, a single integration gives Rs (T - t) = (T_{1} - t) e^{- --} WC where s is the area of surface passed over by the gases from the furnace to any point where the gas temperature T is measured, and the rate of heat transfer is R. As written, this formula could be used for calculating the temperature of the gas at any point in the boiler setting. Gas temperatures, however, calculated in this way are not to be depended upon as it is known that the transfer rate is not independent of the temperature. Again, if the transfer rate is assumed as varying directly with the weight of the gases passing, which is Reynolds' suggestion, it is seen that the weight of the gases entirely disappears from the formula and as a consequence if the formula was correct, as long as the temperature of the gas entering the surface from the furnace was the same, the temperatures throughout the setting would be the same. This is known also to be incorrect. If, however, in place of T is written T_{2} and in place of s is written S, the entire surface of the boiler, and the formula is re-arranged, it becomes: _ _ WC | T_{1} - t | R = --- Log[89]| --------- | S |_ T_{2} - t _| This formula can be considered as giving a way
PREV.   NEXT  
|<   378   379   380   381   382   383   384   385   386   387   388   389   390   391   392   393   394   395   396   397   398   399   400   401   402  
403   404   405   406   407   408   409   410   411   412   413   >>  



Top keywords:
temperature
 

surface

 
formula
 

transfer

 

furnace

 

written

 
incorrect
 

boiler

 
setting
 
weight

radiation

 

absorbed

 

calculating

 

passing

 

temperatures

 
independent
 

passed

 

measured

 

disappears

 

entering


correct

 

entire

 
giving
 

arranged

 
consequence
 

assumed

 
varying
 

depended

 

directly

 
considered

suggestion
 

Reynolds

 

calculated

 

assumption

 

remembered

 

implied

 

Expressed

 

similar

 

amount

 

received


cooling

 

removed

 

rational

 
assumes
 
element
 

integration

 

single

 

equated

 

exposed

 
proposed