FREE BOOKS

Author's List




PREV.   NEXT  
|<   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306  
307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   >>   >|  
vided into _celestial physics_ and _terrestrial physics_--the phenomena presented by the universe, and the phenomena presented by earthly bodies. If now celestial bodies and terrestrial bodies exhibit sundry leading phenomena in common, as they do, how can the generalisation of these common phenomena be considered as pertaining to the one class rather than to the other? If inorganic physics includes geometry (which M. Comte has made it do by comprehending _geometrical_ astronomy in its sub-section--celestial physics); and if its sub-section--terrestrial physics, treats of things having geometrical properties; how can the laws of geometrical relations be excluded from terrestrial physics? Clearly if celestial physics includes the geometry of objects in the heavens, terrestrial physics includes the geometry of objects on the earth. And if terrestrial physics includes terrestrial geometry, while celestial physics includes celestial geometry, then the geometrical part of terrestrial physics precedes the geometrical part of celestial physics; seeing that geometry gained its first ideas from surrounding objects. Until men had learnt geometrical relations from bodies on the earth, it was impossible for them to understand the geometrical relations of bodies in the heavens. So, too, with celestial mechanics, which had terrestrial mechanics for its parent. The very conception of _force_, which underlies the whole of mechanical astronomy, is borrowed from our earthly experiences; and the leading laws of mechanical action as exhibited in scales, levers, projectiles, etc., had to be ascertained before the dynamics of the solar system could be entered upon. What were the laws made use of by Newton in working out his grand discovery? The law of falling bodies disclosed by Galileo; that of the composition of forces also disclosed by Galileo; and that of centrifugal force found out by Huyghens--all of them generalisations of terrestrial physics. Yet, with facts like these before him, M. Comte places astronomy before physics in order of evolution! He does not compare the geometrical parts of the two together, and the mechanical parts of the two together; for this would by no means suit his hypothesis. But he compares the geometrical part of the one with the mechanical part of the other, and so gives a semblance of truth to his position. He is led away by a verbal delusion. Had he confined his attention to the things and disregarded the
PREV.   NEXT  
|<   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306  
307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   >>   >|  



Top keywords:
physics
 

terrestrial

 

geometrical

 

celestial

 

bodies

 

geometry

 

includes

 

mechanical

 

phenomena

 
objects

relations

 

astronomy

 

things

 

section

 

mechanics

 

heavens

 

common

 
presented
 
earthly
 
leading

disclosed

 

Galileo

 

discovery

 

generalisations

 

Newton

 

Huyghens

 

forces

 

centrifugal

 
composition
 

working


falling
 
position
 

semblance

 
verbal
 
attention
 
disregarded
 

confined

 

delusion

 
compares
 
evolution

places
 

compare

 

hypothesis

 
understand
 
excluded
 

Clearly

 

properties

 

comprehending

 

treats

 

gained