FREE BOOKS

Author's List




PREV.   NEXT  
|<   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63  
64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   >>   >|  
. 17, No. 4.) It is characteristic of a brittle wood which gives way suddenly without warning, like a piece of chalk. In this case the surface of fracture is described as brash. ~Compression failure~ (see Fig. 17, No. 5) has few variations except that it appears at various distances from the neutral plane of the beam. It is very common in green timbers. The compressive stress parallel to the fibres causes them to buckle or bend as in an endwise compressive test. This action usually begins on the top side shortly after the elastic limit is reached and extends downward, sometimes almost reaching the neutral plane before complete failure occurs. Frequently two or more failures develop at about the same time. ~Horizontal shear failure,~ in which the upper and lower portions of the beam slide along each other for a portion of their length either at one or at both ends (see Fig. 17, No. 6), is fairly common in air-dry material and in green material when the ratio of the height of the beam to the span is relatively large. It is not common in small clear specimens. It is often due to shake or season checks, common in large timbers, which reduce the actual area resisting the shearing action considerably below the calculated area used in the formulae for horizontal shear. (See page 98 for this formulae.) For this reason it is unsafe, in designing large timber beams, to use shearing stresses higher than those calculated for beams that failed in horizontal shear. The effect of a failure in horizontal shear is to divide the beam into two or more beams the combined strength of which is much less than that of the original beam. Fig. 18 shows a large beam in which two failures in horizontal shear occurred at the same end. That the parts behave independently is shown by the compression failure below the original location of the neutral plane. [Illustration: FIG. 18.--Failure of a large beam by horizontal shear. _Photo by U. S, Forest Service._] Table XI gives an analysis of the causes of first failure in 840 large timber beams of nine different species of conifers. Of the total number tested 165 were air-seasoned, the remainder green. The failure occurring first signifies the point of greatest weakness in the specimen under the particular conditions of loading employed (in this case, third-point static loading). |-----------------------------------------------------------| | TABLE XI
PREV.   NEXT  
|<   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63  
64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   >>   >|  



Top keywords:

failure

 

horizontal

 

common

 

neutral

 

timbers

 

compressive

 

material

 

formulae

 

calculated

 
shearing

timber
 

original

 

failures

 
action
 

loading

 

greatest

 
weakness
 

specimen

 
unsafe
 

designing


stresses
 

failed

 

divide

 

reason

 

effect

 

higher

 

signifies

 

resisting

 

static

 

actual


season

 

checks

 

reduce

 
considerably
 

employed

 

combined

 

conditions

 
remainder
 

Forest

 
number

Failure
 
tested
 

Service

 

species

 

conifers

 

analysis

 

Illustration

 

occurred

 
seasoned
 

strength