FREE BOOKS

Author's List




PREV.   NEXT  
|<   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79  
80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   >>   >|  
the crushing strength parallel to the grain, fibre stress at elastic limit in bending, and shearing strength along the grain of wood vary in direct proportion to the weight of dry wood per unit of volume when green. Other strength values follow different laws. The hardness varies in a slightly greater ratio than the square of the density. The work to the breaking point increases even more rapidly than the cube of density. The modulus of rupture in bending lies between the first power and the square of the density. This, of course, is true only in case the greater weight is due to increase in the amount of wood substance. A wood heavy with resin or other infiltrated substance is not necessarily stronger than a similar specimen free from such materials. If differences in weight are due to degree of seasoning, in other words, to the relative amounts of water contained, the rules given above will of course not hold, since strength increases with dryness. But of given specimens of pine or of oak, for example, in the green condition, the comparative strength may be inferred from the weight. It is not permissible, however, to compare such widely different woods as oak and pine on a basis of their weights.[27] [Footnote 27: The oaks for some unknown reason fall below the normal strength for weight, whereas the hickories rise above. Certain other woods also are somewhat exceptional to the normal relation of strength and density.] The weight of wood substance, that is, the material which composes the walls of the fibres and other cells, is practically the same in all species, whether pine, hickory, or cottonwood, being a little greater than half again as heavy as water. It varies slightly from beech sapwood, 1.50, to Douglas fir heartwood, 1.57, averaging about 1.55 at 30 deg. to 35 deg. C., in terms of water at its greatest density 4 deg. C. The reason any wood floats is that the air imprisoned in its cavities buoys it up. When this is displaced by water the wood becomes water-logged and sinks. Leaving out of consideration infiltrated substances, the reason a cubic foot of one kind of dry wood is heavier than that of another is because it contains a greater amount of wood substance. ~Density~ is merely the weight of a unit of volume, as 35 pounds per cubic foot, or 0.56 grams per cubic centimetre. ~Specific gravity~ or relative density is the ratio of the density of any material to the density of distilled water at 4 de
PREV.   NEXT  
|<   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79  
80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   >>   >|  



Top keywords:

density

 

strength

 

weight

 
greater
 

substance

 

reason

 

normal

 
infiltrated
 
relative
 

material


amount

 

varies

 
square
 

bending

 

volume

 

increases

 

slightly

 

cottonwood

 

exceptional

 

sapwood


pounds

 

hickory

 

distilled

 
centimetre
 

composes

 

Specific

 

practically

 

fibres

 

gravity

 
species

relation

 

imprisoned

 

cavities

 

Certain

 

consideration

 

substances

 
Leaving
 
displaced
 
logged
 
floats

averaging

 
heartwood
 

Density

 

greatest

 

heavier

 
Douglas
 

rupture

 

modulus

 
rapidly
 
necessarily