FREE BOOKS

Author's List




PREV.   NEXT  
|<   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114  
115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   >>   >|  
tandardization of tests for speed. Proc. Am. Soc. for Testing Materials, Vol. VIII, Philadelphia, 1908.] Following are the formulae used in determining the speed of the movable head of the machine in inches per minute (n): (1) For endwise compression n = Z l Z l^{2} (2) For beams (centre loading) n = --------- 6h Z l^{2} (3) For beams (third-pointloading) n = --------- 5.4h Z = rate of fibre strain per inch of fibre length. l = span of beam or length of compression specimen. h = height of beam. The values commonly used for Z are as follows: Bending large beams Z = 0.0007 Bending small beams Z = 0.0015 Endwise compression-large specimens Z = 0.0015 Endwise compression-small " Z = 0.003 Right-angled compression-large " Z = 0.007 Right-angled compression-small " Z = 0.015 Shearing parallel to the grain Z = 0.015 Example: At what speed should the crosshead move to give the required rate of fibre strain in testing a small beam 2" X 2" X 30". (Span = 28".) Substituting these values in equation (2) above: (0.0015 X 28^2) n = ----------------- = 0.1 inch per minute. (6 X 2) In order that tests may be intelligently compared, it is important that account be taken of the speed at which the stress was applied. In determining the basis for a ratio between time and strength the rate of strain, which is controllable, and not the ratio of stress, which is circumstantial, should be used. In other words, the rate at which the movable head of the testing machine descends and not the rate of increase in the load is to be regulated. This ratio, to which the name _speed-strength modulus_ has been given, may be expressed as a coefficient which, if multiplied into any proportional change in speed, will give the proportional change in strength. This ratio is derived from empirical curves. (See Table XVII.) |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | TABLE XVII TABLE XVII
PREV.   NEXT  
|<   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114  
115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   >>   >|  



Top keywords:

compression

 
strength
 

strain

 

Bending

 

values

 

testing

 

stress

 

angled

 

Endwise

 

length


machine

 

minute

 

proportional

 

movable

 

change

 

determining

 

compared

 

intelligently

 

important

 

curves


applied

 

empirical

 

account

 

derived

 

modulus

 

circumstantial

 

descends

 

regulated

 

increase

 

controllable


multiplied

 

expressed

 
coefficient
 
parallel
 

loading

 

centre

 

endwise

 

pointloading

 

inches

 

formulae


Testing

 

tandardization

 

Materials

 

Following

 

Philadelphia

 

specimen

 

required

 

crosshead

 

Substituting

 
equation