FREE BOOKS

Author's List




PREV.   NEXT  
|<   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305  
306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   >>   >|  
the petalody of the stamens (doubling of flowers). In this connection we must keep in view the fact that every visible character in a plant is the resultant of the cooperation of specific structure, with its various potentialities, and the influence of the environment. We know, that in a pure species all characters vary, that a blue-flowering Campanula or a red Sempervivum can be converted by experiment into white-flowering forms, that a transformation of stamens into petals may be caused by fungi or by the influence of changed conditions of nutrition, or that plants in dry and poor soil become dwarfed. But so far as the experiments justify a conclusion, it would appear that such alterations are not inherited by the offspring. Like all other variations they appear only so long as special conditions prevail in the surroundings. It has been shown that the case is quite different as regards the white-flowering, double or dwarf races, because these retain their characters when cultivated under practically identical conditions, and side by side with the blue, single-flowering or tall races. The problem may therefore be stated thus: how can a character, which appears in the one case only under the strictly limited conditions of the experiment, in other cases become apparent under the very much wider conditions of ordinary cultivation? If a character appears, in these circumstances, in the case of all individuals, we then speak of constant races. In such simple cases the essential point is not the creation of a new character but rather an ALTERATION OF THIS CHARACTER IN ACCORDANCE WITH THE ENVIRONMENT. In the examples mentioned the modified character in the simple varieties (or a number of characters in elementary species) appears more or less suddenly and is constant in the above sense. The result is what de Vries has termed a Mutation. In this connection we must bear in mind the fact that no difference, recognisable externally, need exist between individual variation and mutation. Even the most minute quantitative difference between two plants may be of specific value if it is preserved under similar external conditions during many successive generations. We do not know how this happens. We may state the problem in other terms; by saying that the specific structure must be altered. It is possible, to some extent, to explain this sudden alteration, if we regard it as a chemical alteration of structure either in the specific
PREV.   NEXT  
|<   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305  
306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   >>   >|  



Top keywords:

conditions

 

character

 
specific
 

flowering

 
appears
 

structure

 

characters

 
plants
 

problem

 

constant


simple

 

difference

 

experiment

 
influence
 

species

 

stamens

 
connection
 

alteration

 

preserved

 

explain


ACCORDANCE
 

sudden

 
ENVIRONMENT
 
mentioned
 

number

 
elementary
 

varieties

 

extent

 

similar

 

modified


examples

 

CHARACTER

 

creation

 
essential
 

chemical

 

external

 

ALTERATION

 

regard

 

suddenly

 

successive


externally

 

recognisable

 
individual
 

minute

 

individuals

 

mutation

 

quantitative

 

variation

 

result

 
generations