FREE BOOKS

Author's List




PREV.   NEXT  
|<   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315  
316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   332   333   334   335   336   337   338   339   340   >>   >|  
be said that the larvae of the sea-urchin reach on the third day or earlier (according to species and temperature) the so-called pluteus stage, in which they possess a typical skeleton; while neither the larvae of the starfish nor those of the mollusc form a skeleton at the corresponding stage. It was, therefore, a matter of some interest to find out whether or not the larvae produced by the fertilisation of the sea-urchin egg with the sperm of starfish or mollusc would form the normal and typical pluteus skeleton. This was invariably the case in the experiments of Godlewski, Kupelwieser, Hagedoorn, and the writer. These hybrid larvae were exclusively maternal in character. It might be argued that in the case of heterogeneous hybridisation the sperm-nucleus does not fuse with the egg-nucleus, and that, therefore, the spermatozoon cannot transmit its hereditary substances to the larvae. But these objections are refuted by Godlewski's experiments, in which he showed definitely that if the egg of the sea-urchin is fertilised with the sperm of a crinoid the fusion of the egg-nucleus and sperm-nucleus takes place in the normal way. It remains for further experiments to decide what the character of the adult hybrids would be. (b). ARTIFICIAL PARTHENOGENESIS. Possibly in no other field of Biology has our ability to control life-phenomena by outside conditions been proved to such an extent as in the domain of fertilisation. The reader knows that the eggs of the overwhelming majority of animals cannot develop unless a spermatozoon enters them. In this case a living agency is the cause of development and the problem arises whether it is possible to accomplish the same result through the application of well-known physico-chemical agencies. This is, indeed, true, and during the last ten years living larvae have been produced by chemical agencies from the unfertilised eggs of sea-urchins, starfish, holothurians and a number of annelids and molluscs; in fact this holds true in regard to the eggs of practically all forms of animals with which such experiments have been tried long enough. In each form the method of procedure is somewhat different and a long series of experiments is often required before the successful method is found. The facts of Artificial Parthenogenesis, as the chemical fertilisation of the egg is called, have, perhaps, some bearing on the problem of evolution. If we wish to form a mental image of the proce
PREV.   NEXT  
|<   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315  
316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   332   333   334   335   336   337   338   339   340   >>   >|  



Top keywords:

larvae

 

experiments

 
nucleus
 

urchin

 
skeleton
 

fertilisation

 

starfish

 
chemical
 

normal

 

produced


character

 

spermatozoon

 

agencies

 
method
 

Godlewski

 

problem

 
animals
 

typical

 

pluteus

 

mollusc


living
 

called

 
reader
 
application
 

physico

 
extent
 

result

 

domain

 

arises

 

develop


enters

 

majority

 

overwhelming

 
accomplish
 

agency

 

development

 

successful

 

Artificial

 

required

 

series


Parthenogenesis

 

mental

 
bearing
 

evolution

 

procedure

 

holothurians

 

number

 

annelids

 

urchins

 
unfertilised