FREE BOOKS

Author's List




PREV.   NEXT  
|<   622   623   624   625   626   627   628   629   630   631   632   633   634   635   636   637   638   639   640   641   642   643   644   645   646  
647   648   649   650   651   652   653   654   655   656   657   658   659   660   661   662   663   664   665   666   667   668   669   670   671   >>   >|  
h of the satellite at any instant.) Now if we consider all the possible elliptic orbits of a satellite about its planet which have the same amount of "rotational momentum," we find that the major axis of the ellipse described will be different according to the amount of flattening (or the eccentricity) of the ellipse described. A figure titled "A 'family' of elliptic orbits with constant rotational momentum" (Fig. 1) illustrates for a given planet and satellite all such orbits with constant rotational momentum, and with all the major axes in the same direction. It will be observed that there is a continuous transformation from one orbit to the next, and that the whole forms a consecutive group, called by mathematicians "a family" of orbits. In this case the rotational momentum is constant and the position of any orbit in the family is determined by the length of the major axis of the ellipse; the classification is according to the major axis, but it might have been made according to anything else which would cause the orbit to be exactly determinate. I shall come later to the classification of all possible forms of ideal liquid stars, which have the same amount of rotational momentum, and the classification will then be made according to their densities, but the idea of orderly arrangement in a "family" is just the same. We thus arrive at the conception of a definite type of motion, with a constant amount of rotational momentum, and a classification of all members of the family, formed by all possible motions of that type, according to the value of some measurable quantity (this will hereafter be density) which determines the motion exactly. In the particular case of the elliptic motion used for illustration the motion was stable, but other cases of motion might be adduced in which the motion would be unstable, and it would be found that classification in a family and specification by some measurable quantity would be equally applicable. A complex mechanical system may be capable of motion in several distinct modes or types, and the motions corresponding to each such type may be arranged as before in families. For the sake of simplicity I will suppose that only two types are possible, so that there will only be two families; and the rotational momentum is to be constant. The two types of motion will have certain features in common which we denote in a sort of shorthand by the letter A. Similarly the two types may
PREV.   NEXT  
|<   622   623   624   625   626   627   628   629   630   631   632   633   634   635   636   637   638   639   640   641   642   643   644   645   646  
647   648   649   650   651   652   653   654   655   656   657   658   659   660   661   662   663   664   665   666   667   668   669   670   671   >>   >|  



Top keywords:

motion

 
momentum
 

rotational

 

family

 
classification
 

constant

 
orbits
 

amount

 

elliptic

 

satellite


ellipse

 

quantity

 

families

 

measurable

 

motions

 

planet

 

specification

 
equally
 

unstable

 

adduced


applicable
 

complex

 
capable
 
system
 

mechanical

 

density

 

determines

 

stable

 
illustration
 

distinct


features

 
common
 

denote

 

Similarly

 

letter

 

shorthand

 

observed

 

arranged

 

instant

 

direction


suppose

 

simplicity

 

figure

 

eccentricity

 

titled

 
length
 

determined

 
flattening
 

continuous

 

position