FREE BOOKS

Author's List




PREV.   NEXT  
|<   628   629   630   631   632   633   634   635   636   637   638   639   640   641   642   643   644   645   646   647   648   649   650   651   652  
653   654   655   656   657   658   659   660   661   662   663   664   665   666   667   668   669   670   671   672   673   674   675   676   677   >>   >|  
any internal currents generated in the liquid by the cooling are annulled so quickly by fluid friction as to be insignificant; further let the liquid always remain at any instant incompressible and homogeneous. All that we are concerned with is that, as time passes, the liquid star shrinks, rotates in one piece as if it were solid, and remains incompressible and homogeneous. The condition is of course artificial, but it represents the actual processes of nature as well as may be, consistently with the postulated incompressibility and homogeneity. (Mathematicians are accustomed to regard the density as constant and the rotational momentum as increasing. But the way of looking at the matter, which I have adopted, is easier of comprehension, and it comes to the same in the end.) The shrinkage of a constant mass of matter involves an increase of its density, and we have therefore to trace the changes which supervene as the star shrinks, and as the liquid of which it is composed increases in density. The shrinkage will, in ordinary parlance, bring the weights nearer to the axis of rotation. Hence in order to keep up the rotational momentum, which as we have seen must remain constant, the mass must rotate quicker. The greater speed of rotation augments the importance of centrifugal force compared with that of gravity, and as the flattening of the planetary spheroid was due to centrifugal force, that flattening is increased; in other words the ellipticity of the planetary spheroid increases. As the shrinkage and corresponding increase of density proceed, the planetary spheroid becomes more and more elliptic, and the succession of forms constitutes a family classified according to the density of the liquid. The specific mark of this family is the flattening or ellipticity. Now consider the stability of the system, we have seen that the spheroid with a slow rotation, which forms our starting-point, was slightly less stable than the sphere, and as we proceed through the family of ever flatter ellipsoids the stability continues to diminish. At length when it has assumed the shape shown in a figure titled "Planetary spheroid just becoming unstable" (Fig. 2.) where the equatorial and polar axes are proportional to the numbers 1000 and 583, the stability has just disappeared. According to the general principle explained above this is a form of bifurcation, and corresponds to the form denoted A. The specific difference a of this
PREV.   NEXT  
|<   628   629   630   631   632   633   634   635   636   637   638   639   640   641   642   643   644   645   646   647   648   649   650   651   652  
653   654   655   656   657   658   659   660   661   662   663   664   665   666   667   668   669   670   671   672   673   674   675   676   677   >>   >|  



Top keywords:

density

 
liquid
 

spheroid

 

family

 
rotation
 

shrinkage

 
planetary
 

flattening

 

stability

 

constant


momentum

 

matter

 

specific

 

increase

 

increases

 

rotational

 

remain

 
centrifugal
 

ellipticity

 

homogeneous


proceed
 

incompressible

 
shrinks
 
constitutes
 

starting

 

elliptic

 

succession

 

system

 
classified
 

increased


diminish

 
proportional
 

numbers

 

equatorial

 

disappeared

 

According

 

corresponds

 

denoted

 

difference

 

bifurcation


general

 

principle

 

explained

 

unstable

 

flatter

 
ellipsoids
 

continues

 
sphere
 

stable

 

gravity