FREE BOOKS

Author's List




PREV.   NEXT  
|<   621   622   623   624   625   626   627   628   629   630   631   632   633   634   635   636   637   638   639   640   641   642   643   644   645  
646   647   648   649   650   651   652   653   654   655   656   657   658   659   660   661   662   663   664   665   666   667   668   669   670   >>   >|  
ay be assumed by celestial bodies in the course of their evolution. I believe further that homologous conceptions are applicable in the consideration of the transmutations of the various forms of animal and of vegetable life and in other regions of thought. Even if some of my readers should think that what I shall say on this head is fanciful, yet at least the exposition will serve to illustrate the meaning to be attached to the laws of stability in the physical universe. I propose, therefore, to begin this essay by a sketch of the principles of stability as they are now formulated by physicists. I. If a slight impulse be imparted to a system in equilibrium one of two consequences must ensue; either small oscillations of the system will be started, or the disturbance will increase without limit and the arrangement of the system will be completely changed. Thus a stick may be in equilibrium either when it hangs from a peg or when it is balanced on its point. If in the first case the stick is touched it will swing to and fro, but in the second case it will topple over. The first position is a stable one, the second is unstable. But this case is too simple to illustrate all that is implied by stability, and we must consider cases of stable and of unstable motion. Imagine a satellite and its planet, and consider each of them to be of indefinitely small size, in fact particles; then the satellite revolves round its planet in an ellipse. A small disturbance imparted to the satellite will only change the ellipse to a small amount, and so the motion is said to be stable. If, on the other hand, the disturbance were to make the satellite depart from its initial elliptic orbit in ever widening circuits, the motion would be unstable. This case affords an example of stable motion, but I have adduced it principally with the object of illustrating another point not immediately connected with stability, but important to a proper comprehension of the theory of stability. The motion of a satellite about its planet is one of revolution or rotation. When the satellite moves in an ellipse of any given degree of eccentricity, there is a certain amount of rotation in the system, technically called rotational momentum, and it is always the same at every part of the orbit. (Moment of momentum or rotational momentum is measured by the momentum of the satellite multiplied by the perpendicular from the planet on to the direction of the pat
PREV.   NEXT  
|<   621   622   623   624   625   626   627   628   629   630   631   632   633   634   635   636   637   638   639   640   641   642   643   644   645  
646   647   648   649   650   651   652   653   654   655   656   657   658   659   660   661   662   663   664   665   666   667   668   669   670   >>   >|  



Top keywords:

satellite

 
motion
 

stability

 

stable

 
system
 

planet

 
momentum
 

disturbance

 

unstable

 

ellipse


rotation

 

equilibrium

 

rotational

 

imparted

 

illustrate

 

amount

 

initial

 
depart
 

elliptic

 

affords


widening
 

circuits

 
conceptions
 
indefinitely
 

transmutations

 

Imagine

 

particles

 

applicable

 
adduced
 

consideration


revolves

 
change
 

homologous

 

evolution

 

called

 

technically

 

eccentricity

 

perpendicular

 

direction

 

multiplied


measured

 

Moment

 

degree

 

immediately

 

connected

 
important
 

object

 
illustrating
 

proper

 

comprehension