FREE BOOKS

Author's List




PREV.   NEXT  
|<   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62  
63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   >>   >|  
r companionship, an "affinity"--call it what you will--which is bound to be satisfied if other atoms are in the neighborhood. Placed solely among atoms of its own kind, the oxygen atom seizes on a fellow oxygen atom, and in all their mad dancings these two mates cling together--possibly revolving about each other in miniature planetary orbits. Precisely the same thing occurs among the hydrogen atoms. But now suppose the various pairs of oxygen atoms come near other pairs of hydrogen atoms (under proper conditions which need not detain us here), then each oxygen atom loses its attachment for its fellow, and flings itself madly into the circuit of one of the hydrogen couplets, and--presto!--there are only two molecules for every three there were before, and free oxygen and hydrogen have become water. The whole process, stated in chemical phraseology, is summed up in the statement that under the given conditions the oxygen atoms had a greater affinity for the hydrogen atoms than for one another. As chemists studied the actions of various kinds of atoms, in regard to their unions with one another to form molecules, it gradually dawned upon them that not all elements are satisfied with the same number of companions. Some elements ask only one, and refuse to take more; while others link themselves, when occasion offers, with two, three, four, or more. Thus we saw that oxygen forsook a single atom of its own kind and linked itself with two atoms of hydrogen. Clearly, then, the oxygen atom, like a creature with two hands, is able to clutch two other atoms. But we have no proof that under any circumstances it could hold more than two. Its affinities seem satisfied when it has two bonds. But, on the other hand, the atom of nitrogen is able to hold three atoms of hydrogen, and does so in the molecule of ammonium (NH3); while the carbon atom can hold four atoms of hydrogen or two atoms of oxygen. Evidently, then, one atom is not always equivalent to another atom of a different kind in combining powers. A recognition of this fact by Frankland about 1852, and its further investigation by others (notably A. Kekule and A. S. Couper), led to the introduction of the word equivalent into chemical terminology in a new sense, and in particular to an understanding of the affinities or "valency" of different elements, which proved of the most fundamental importance. Thus it was shown that, of the four elements that enter most prominently i
PREV.   NEXT  
|<   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62  
63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   >>   >|  



Top keywords:

oxygen

 

hydrogen

 

elements

 
satisfied
 

equivalent

 

conditions

 

molecules

 

affinity

 

affinities

 
chemical

fellow

 

clutch

 

terminology

 
circumstances
 

creature

 

single

 

occasion

 

offers

 

prominently

 

linked


Clearly

 

forsook

 
investigation
 

notably

 

Evidently

 

fundamental

 

combining

 
understanding
 

recognition

 
Frankland

powers
 

proved

 
carbon
 

nitrogen

 
importance
 

introduction

 

valency

 

Kekule

 

ammonium

 

molecule


Couper

 

statement

 

occurs

 

Precisely

 

orbits

 

revolving

 

miniature

 

planetary

 
suppose
 

attachment