FREE BOOKS

Author's List




PREV.   NEXT  
|<   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53  
54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   >>   >|  
t it should constantly vary in the same direction when the temperature rises, and that it should possess, at any temperature, a well-marked value. We measure this value by melting ice and by the vapour of boiling water under normal pressure, and the successive hundredths of its variation, beginning with the melting ice, defines the percentage. Thermodynamics, however, has made it plain that we can set up a thermometric scale without relying upon any determined property of a real body. Such a scale has an absolute value independently of the properties of matter. Now it happens that if we make use for the estimation of temperatures, of the phenomena of dilatation under a constant pressure, or of the increase of pressure in a constant volume of a gaseous body, we obtain a scale very near the absolute, which almost coincides with it when the gas possesses certain qualities which make it nearly what is called a perfect gas. This most lucky coincidence has decided the choice of the convention adopted by physicists. They define normal temperature by means of the variations of pressure in a mass of hydrogen beginning with the initial pressure of a metre of mercury at 0 deg. C. M.P. Chappuis, in some very precise experiments conducted with much method, has proved that at ordinary temperatures the indications of such a thermometer are so close to the degrees of the theoretical scale that it is almost impossible to ascertain the value of the divergences, or even the direction that they take. The divergence becomes, however, manifest when we work with extreme temperatures. It results from the useful researches of M. Daniel Berthelot that we must subtract +0.18 deg. from the indications of the hydrogen thermometer towards the temperature -240 deg. C, and add +0.05 deg. to 1000 deg. to equate them with the thermodynamic scale. Of course, the difference would also become still more noticeable on getting nearer to the absolute zero; for as hydrogen gets more and more cooled, it gradually exhibits in a lesser degree the characteristics of a perfect gas. To study the lower regions which border on that kind of pole of cold towards which are straining the efforts of the many physicists who have of late years succeeded in getting a few degrees further forward, we may turn to a gas still more difficult to liquefy than hydrogen. Thus, thermometers have been made of helium; and from the temperature of -260 deg. C. downward the divergence of
PREV.   NEXT  
|<   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53  
54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   >>   >|  



Top keywords:

pressure

 

temperature

 
hydrogen
 

absolute

 

temperatures

 
perfect
 

physicists

 

constant

 

beginning

 

melting


indications
 

degrees

 
thermometer
 

normal

 

direction

 

divergence

 

equate

 
thermodynamic
 

manifest

 

divergences


theoretical

 
impossible
 

ascertain

 

extreme

 

Berthelot

 
subtract
 

Daniel

 
researches
 
results
 

succeeded


forward
 

straining

 

efforts

 

helium

 

downward

 

thermometers

 
difficult
 

liquefy

 

cooled

 

nearer


noticeable

 

difference

 

gradually

 
exhibits
 
regions
 

border

 

lesser

 

degree

 

characteristics

 

relying