FREE BOOKS

Author's List




PREV.   NEXT  
|<   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33  
34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   >>   >|  
When the apertures do not correspond, the stop is said to be _in_. Thus it is that when no stops are drawn no sound is produced, even although the wind-chest be full of air and the keys played upon. This wind-chest with the slider stop control is about all that is left to us of the old form of key action. The pallets were connected to the keys by a series of levers, known as the tracker action. There were usually six joints or sources of friction, between the key and the pallet. To overcome this resistance and close the pallet required a strong spring. Inasmuch as it would never do to put all the large pipes (because of their weight) at one end of the wind-chest, they were usually divided between the two ends and it became necessary to transfer the pull of the keys sideways, which was done by a series of _rollers_ called the _roller-board_. This, of course, increased the friction and necessitated the use of a still stronger spring. That with the increased area of the pallet is why the lower notes of the organ were so hard to play. And to the resistance of the spring must also be added the resistance of the wind-pressure, which increased with every stop drawn. When the organ was a large one with many stops, and the keyboards were coupled together, it required considerable exertion to bring out the full power of the instrument; sometimes the organist had to stand on the pedals and throw the weight of his body on the keys to get a big chord. All kinds of schemes were tried to lighten the "touch," as the required pressure on the keys is called, the most successful of which was dividing the pallet into two parts which admitted a small quantity of wind to enter the groove and release the pressure before the pallet was fully opened; but even on the best of organs the performance of music played with ease upon modern instruments was absolutely impossible. CHAPTER III. THE DAWN OF A NEW ERA--THE PNEUMATIC LEVER. Just as we no longer see four men tugging at the steering wheel of an ocean steamer, the intervention of the steam steering gear rendering the use of so much physical force unnecessary, so it now occurred to an organ-builder in the city of Bath, England, named Charles Spachman Barker,[1] to enlist the force of the organ wind itself to overcome the resistance of the pallets in the wind-chest. This contrivance is known as the _pneumatic lever_, and consists of a toy bellows about nine inches lon
PREV.   NEXT  
|<   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33  
34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   >>   >|  



Top keywords:
pallet
 

resistance

 

spring

 

required

 

increased

 

pressure

 
series
 
friction
 
called
 

steering


weight

 

overcome

 

pallets

 
played
 

action

 

instruments

 

modern

 

lighten

 

CHAPTER

 

impossible


schemes

 

absolutely

 

admitted

 

quantity

 
groove
 

release

 

opened

 

performance

 
successful
 

organs


dividing

 

Charles

 
Spachman
 

Barker

 
England
 

occurred

 

builder

 

enlist

 
bellows
 

inches


consists
 
contrivance
 

pneumatic

 

unnecessary

 

longer

 

PNEUMATIC

 
tugging
 

rendering

 

physical

 

intervention