FREE BOOKS

Author's List




PREV.   NEXT  
|<   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142  
143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   >>   >|  
me of the mollusca may also be included. Another objection to Mr. Spencer's speculation is derived from considerations which have already been stated, as to past time. For if{171} the annulose animals have been formed by aggregation, we ought to find this process much less perfect in the oldest form. But a complete development, such as already obtains in the lobster, &c., was reached by the Eurypterida and Trilobites of the palaeozoic strata; and annelids, probably formed mainly like those of the present day, abounded during the deposition of the oldest fossiliferous rocks. [Illustration: TRILOBITE.] Thirdly, and lastly, as regards such serial homology as is exemplified by the backbone of man, there are also several objections to Mr. Spencer's mechanical explanation. On the theory of evolution most in favour, the first Vertebrata were aquatic. Now, as natation is generally effected by repeated and vigorous lateral flexions of the body, we ought to find the segmentation much more complete laterally than on the dorsal and ventral aspects of the spinal column. Nevertheless, in those species which, taken together, constitute a series of more and more distinctly segmented forms, the segmentation gradually increases _all round_ the central part of the spinal column. Mr. Spencer[173] thinks it probable that the sturgeon has retained the notochordal (that is, the primitive, unsegmented) structure because it{172} is sluggish. But Dr. Guenther informs me that the sluggishness of the common tope (_Galeus vulgaris_) is much like that of the sturgeon, and yet the bodies of its vertebrae are distinct and well-ossified. Moreover, the great salamander of Japan is much more inert and sluggish than either, and yet it has a well-developed, bony spine. I can learn nothing of the habits of the sharks _Hexanchus_, _Heptanchus_, and _Echinorhinus_, but Mueller describes them as possessing a persistent _chorda dorsalis_.[174] It may be they have the habits of the tope, but other sharks are amongst the very swiftest and most active of fishes. In the bony pike (_lepidosteus_), the rigidity of the bony scales by which it is completely enclosed must prevent any excessive flexion of the body, and yet its vertebral column presents a degree of ossification and vertebral completeness greater than that found in any other fish whatever. Mr. Spencer supports his argument by the non-segmentation of the anterior end of the skeletal axis, _i
PREV.   NEXT  
|<   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142  
143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   >>   >|  



Top keywords:

Spencer

 

column

 

segmentation

 

sturgeon

 

spinal

 

complete

 

sluggish

 

oldest

 
sharks
 

habits


formed
 

vertebral

 

vertebrae

 
distinct
 

argument

 
vulgaris
 
bodies
 

supports

 

salamander

 

Moreover


anterior

 

ossified

 
informs
 

unsegmented

 
structure
 

primitive

 

notochordal

 

probable

 
retained
 

sluggishness


common

 

developed

 

skeletal

 

Guenther

 

Galeus

 

swiftest

 

active

 

fishes

 
thinks
 
ossification

degree

 

presents

 

prevent

 

flexion

 

enclosed

 

completely

 

lepidosteus

 

rigidity

 

scales

 

greater