FREE BOOKS

Author's List




PREV.   NEXT  
|<   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50  
51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   >>   >|  
make it quite clear. I shall have to preface it by the explanation of two simple laws. The first of these is, that a body acted on by a constant force, so as to have its motion uniformly accelerated, suppose in a straight line, moves through distances which increase as the square of the time that the accelerating force continues to be exerted. The necessary nature of this law, or rather the action of which this law is the expression, is shown in Fig. 3. [Illustration: Fig. 3] Let the distances A B, B C, C D, and D E in this figure represent four successive seconds of time. They may just as well be conceived to represent any other equal units, however small. Seconds are taken only for convenience. At the commencement of the first second, let a body start from a state of rest at A, under the action of a constant force, sufficient to move it in one second through a distance of one foot. This distance also is taken only for convenience. At the end of this second, the body will have acquired a velocity of two feet per second. This is obvious because, in order to move through one foot in this second, the body must have had during the second an average velocity of one foot per second. But at the commencement of the second it had no velocity. Its motion increased uniformly. Therefore, at the termination of the second its velocity must have reached two feet per second. Let the triangle A B F represent this accelerated motion, and the distance, of one foot, moved through during the first second, and let the line B F represent the velocity of two feet per second, acquired by the body at the end of it. Now let us imagine the action of the accelerating force suddenly to cease, and the body to move on merely with the velocity it has acquired. During the next second it will move through two feet, as represented by the square B F C I. But in fact, the action of the accelerating force does not cease. This force continues to be exerted, and produces on the body during the next second the same effect that it did during the first second, causing it to move through an additional foot of distance, represented by the triangle F I G, and to have its velocity accelerated two additional feet per second, as represented by the line I G. So in two seconds the body has moved through four feet. We may follow the operation of this law as far as we choose. The figure shows it during four seconds, or any other unit, of time, and also for any unit o
PREV.   NEXT  
|<   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50  
51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   >>   >|  



Top keywords:
velocity
 

action

 

represent

 

distance

 

accelerating

 

represented

 
acquired
 

motion

 

accelerated


seconds

 

convenience

 

triangle

 

commencement

 

distances

 
square
 

continues

 

exerted

 

additional


uniformly

 

constant

 
figure
 

follow

 

causing

 
operation
 
average
 

choose

 

imagine


produces

 

suddenly

 

effect

 

increased

 

Therefore

 

termination

 

During

 

reached

 

increase


straight

 
suppose
 

nature

 

expression

 

preface

 

explanation

 
simple
 
Illustration
 

obvious


sufficient

 
Seconds
 

successive

 
conceived