FREE BOOKS

Author's List




PREV.   NEXT  
|<   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283  
284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   >>   >|  
hat i/k, l/m,... are all less than unity. Then the fraction i/k+ l/m+ ... is incommensurable, as proved: let it be [kappa]. Then g/(h + [kappa]) is incommensurable, say [lambda]; e/(f + [lambda]) is the same, say [mu]; also c/(d + [mu]), say [nu], and a/(b + [nu]), say [rho]. But [rho] is the fraction a/b+ c/d+ ... itself; which is therefore incommensurable. Let [phi]z represent a a^2 a^3 1 + - + ------- + -------------- + .... z 2z(z+1) 2.3.z(z+1)(z+2) {370} Let z be positive: this series is convergent for all values of a, and approaches without limit to unity as z increases without limit. Change z into z + 1, and form [phi]z - [phi](z+1): the following equation will result-- a [phi]z-[phi](z+1) = ------([phi](z+2)) z(z+1) a [phi](z+1) a [phi](z+1) a [phi](z+2) or a = - ---------- . z + - ---------- . --- ---------- z [phi]z z [phi]z z+1 [phi](z+1) a = [psi]z(z+[psi](z+1)) [psi]z being (a/z)([phi](z+1)/[phi]z); of which observe that it diminishes without limit as z increases without limit. Accordingly, we have [psi]z = a/z+ [psi](z+1) = a/z+ a/(z+1)+ [psi](z+2) = a/z+ a/(z+1)+ a/(z+2)+ [psi](z+3), etc. And, [psi](z + n) diminishing without limit, we have a/z . [phi](z+1)/[phi]z = (a/z+) (a/(z+1)+) (a/(z+2)+) (a/((z+3)+ ...)) Let z = 1/2; and let 4a = -x^2. Then (a/z)[phi](z+1) is -(x^2/2) ( 1 - x^2/(2.3) + x^4/(2.3.4.5...)) or -(x/2) sin x. Again [phi]z is 1 - x^2/2 + x^4/(2.3.4) or cos x: and the continued fraction is (1/4)x^2/(1/2)+ (1/4)x^2/(3/2)+ (1/4)x^2/(5/2)+ ... or -x/2 x/1+ -x^2/3+ -x^2/5+ ... {371} whence tan x = x/1+ -x^2/3+ -x^2/5+ -x^2/7+ ... Or, as written in the usual way, tan x = x ------- 1 - x^2 ------- 3 - x^2 ------- 5 - x^2 ------- 7 - ... This result may be proved in various ways: it may also be verified by calculation. To do this, remember that if a_1/b_1+ a_2/b_2+ a_3/b_3+ ... a_n/b_n = P_n/Q_n; then P_1=a_1, P_2=b_2 P_1, P_3=b_3 P_2+a_3 P_1, P_4=b_4 P_3+a_4 P_2, etc. Q_1=b_1, Q_2=b_2 Q_1+a_2, Q_3=b_3 Q_2+a_3 Q_1, Q_4=b_4 Q_3+a_4 Q_2, etc. in the case before us we have a_1=x, a_2=-x^2, a_3=-x^2, a_4=-x^2, a_5=-x^2, etc. b_1=1, b_2=3,
PREV.   NEXT  
|<   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283  
284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   >>   >|  



Top keywords:

fraction

 

incommensurable

 

increases

 
result
 
proved

lambda

 
written
 

represent

 

continued

 

remember


verified
 

calculation

 

Change

 

equation

 

convergent


values
 

positive

 

approaches

 

diminishing

 
series

Accordingly

 
diminishes
 

observe