FREE BOOKS

Author's List




PREV.   NEXT  
|<   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70  
71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   >>   >|  
ontains as parts any two of its days. It is evident that a containing duration satisfies the conditions for belonging to the same family as the two contained durations. We are now prepared to proceed to the definition of a moment of time. Consider a set of durations all taken from the same family. Let it have the following properties: (i) of any two members of the set one contains the other as a part, and (ii) there is no duration which is a common part of every member of the set. Now the relation of whole and part is asymmetrical; and by this I mean that if A is part of B, then B is not part of A. Also we have already noted that the relation is transitive. Accordingly we can easily see that the durations of any set with the properties just enumerated must be arranged in a one-dimensional serial order in which as we descend the series we progressively reach durations of smaller and smaller temporal extension. The series may start with any arbitrarily assumed duration of any temporal extension, but in descending the series the temporal extension progressively contracts and the successive durations are packed one within the other like the nest of boxes of a Chinese toy. But the set differs from the toy in this particular: the toy has a smallest box which forms the end box of its series; but the set of durations can have no smallest duration nor can it converge towards a duration as its limit. For the parts either of the end duration or of the limit would be parts of all the durations of the set and thus the second condition for the set would be violated. I will call such a set of durations an 'abstractive set' of durations. It is evident that an abstractive set as we pass along it converges to the ideal of all nature with no temporal extension, namely, to the ideal of all nature at an instant. But this ideal is in fact the ideal of a nonentity. What the abstractive set is in fact doing is to guide thought to the consideration of the progressive simplicity of natural relations as we progressively diminish the temporal extension of the duration considered. Now the whole point of the procedure is that the quantitative expressions of these natural properties do converge to limits though the abstractive set does not converge to any limiting duration. The laws relating these quantitative limits are the laws of nature 'at an instant,' although in truth there is no nature at an instant and there is only the abstractive set.
PREV.   NEXT  
|<   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70  
71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   >>   >|  



Top keywords:

durations

 

duration

 
temporal
 

extension

 

abstractive

 
nature
 

series

 

converge

 

properties

 
progressively

instant

 
smallest
 

evident

 

smaller

 

relation

 
quantitative
 

family

 

limits

 

natural

 

violated


condition
 

expressions

 
procedure
 

diminish

 

considered

 

relating

 

limiting

 
relations
 

simplicity

 

converges


nonentity
 
consideration
 

progressive

 
thought
 

member

 

asymmetrical

 

common

 

ontains

 
conditions
 
belonging

definition

 

moment

 

proceed

 

prepared

 
Consider
 

members

 

transitive

 

descending

 
contracts
 

assumed