FREE BOOKS

Author's List




PREV.   NEXT  
|<   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52  
53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   >>   >|  
enture the guess that some of the specific and varietal differences that are characteristic of wild types and which at the same time appear to have no survival value, are only by-products of factors whose most important effect is on another part of the organism where their influence is of vital importance. It is well known that systematists make use of characters that are constant for groups of species, but which do not appear in themselves to have an adaptive significance. If we may suppose that the constancy of such characters may be only an index of the presence of a factor whose _chief_ influence is in some other direction or directions, some physiological influence, for example, we can give at least a reasonable explanation of the constancy of such characters. I am inclined to think that an overstatement to the effect that each factor may affect the entire body, is less likely to do harm than to state that each factor affects only a particular character. The reckless use of the phrase "unit character" has done much to mislead the uninitiated as to the effects that a single change in the germ plasm may produce on the organism. Fortunately, the expression "unit character" is being less used by those students of genetics who are more careful in regard to the implications of their terminology. There is a class of cases of inheritance, due to the XY chromosomes, that is called sex linked inheritance. It is shown both by mutant characters and characters of wild species. For instance, white eye color in Drosophila shows sex linked inheritance. If a white eyed male is mated to a wild red eyed female (fig. 35) all the offspring have red eyes. If these are inbred, there are three red to one white eyed offspring, but white eyes occur only in the males. The grandfather has transmitted his peculiarity to half of his grandsons, but to none of his granddaughters. [Illustration: FIG. 35. Diagram showing a cross between a white eyed male and a red eyed female of the fruit fly. Sex linked inheritance.] The reciprocal cross (fig. 36) is also interesting. If a white eyed female is bred to a red eyed male, all of the daughters have red eyes and all of the sons have white eyes. We call this criss-cross inheritance. If these offspring are inbred, they produce equal numbers of red eyed and white eyed females and equal numbers of red eyed and white eyed males. The ratio is 1: 1: 1: 1, or ignoring sex, 2 reds to 2 whites, and not
PREV.   NEXT  
|<   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52  
53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   >>   >|  



Top keywords:
characters
 
inheritance
 

factor

 

influence

 

linked

 

female

 

character

 

offspring

 

inbred

 
species

constancy
 

numbers

 

produce

 

organism

 

effect

 
terminology
 

differences

 

varietal

 
instance
 

mutant


specific

 

chromosomes

 

Drosophila

 

called

 
granddaughters
 

daughters

 

interesting

 

ignoring

 

whites

 

enture


females
 
reciprocal
 
peculiarity
 

grandsons

 

transmitted

 
grandfather
 

implications

 

showing

 

Diagram

 
Illustration

single

 
suppose
 

significance

 

groups

 

adaptive

 
presence
 
characteristic
 
physiological
 

directions

 
direction