FREE BOOKS

Author's List




PREV.   NEXT  
|<   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66  
67   68   69   70   71   72   73   74   75   76   77   >>  
as any meaning here. [Illustration: FIG. 56. Group IV. (See text.)] The other figure (b) represents "bent", so called from the shape of the wings. This mutant is likewise very variable, often indistinguishable from the wild type, yet when well developed strikingly different from any other mutant. This brief account of a few of the mutant races that can be most easily represented by uncolored figures will serve to show how all parts of the body may change, some of the changes being so slight that they would be overlooked except by an expert, others so great that in the character affected the flies depart far from the original species. _It is important to note that mutations in the first chromosome are not limited to any part of the body nor do they affect more frequently a particular part. The same statement holds equally for all of the other chromosomes. In fact, since each factor may affect visibly several parts of the body at the same time there are no grounds for expecting any special relation between a given chromosome and special regions of the body. It can not too insistently be urged that when we say a character is the product of a particular factor we mean no more than that it is the most conspicuous effect of the factor._ If, then, as these and other results to be described point to the chromosomes as the bearers of the Mendelian factors, and if, as will be shown presently, these factors have a definite location in the chromosomes it is clear that the location of the factors in the chromosomes bears no spatial relation to the location of the parts of the body to each other. LOCALIZATION OF FACTORS IN THE CHROMOSOMES _The Evidence from Sex Linked Inheritance_ When we follow the history of pairs of chromosomes we find that their distribution in successive generations is paralleled by the inheritance of Mendelian characters. This is best shown in the sex chromosomes (fig. 57). In the female there are two of these chromosomes that we call the X chromosomes; in the male there are also two but one differs from those of the female in its shape, and in the fact that it carries none of the normal allelomorphs of the mutant factors. It is called the Y chromosome. The course followed by the sex chromosomes and that by the characters in the case of sex linked inheritance are shown in the next diagram of Drosophila illustrating a cross between a white eyed male and a red eyed female. [Illustration: FIG
PREV.   NEXT  
|<   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66  
67   68   69   70   71   72   73   74   75   76   77   >>  



Top keywords:
chromosomes
 
mutant
 

factors

 

female

 

factor

 

location

 

chromosome

 

character

 

affect

 
inheritance

characters
 

relation

 

Illustration

 

special

 

called

 
Mendelian
 

LOCALIZATION

 

spatial

 
conspicuous
 

results


bearers

 

presently

 

definite

 

effect

 
generations
 

carries

 

normal

 

allelomorphs

 

differs

 

illustrating


Drosophila
 
diagram
 
linked
 

Linked

 

Inheritance

 
follow
 

Evidence

 

FACTORS

 

CHROMOSOMES

 
history

paralleled

 
product
 

successive

 

distribution

 

account

 
strikingly
 
developed
 
easily
 

change

 
represented