FREE BOOKS

Author's List




PREV.   NEXT  
|<   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275  
276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   >>   >|  
hese channels (Fig. 153). *The Scala Vestibula and the Scala Tympani* appear in cross section as the larger of the canals. The former, so named from its connection with the vestibule, occupies the upper position in all parts of the coil. The latter lies below at all places, and is separated from the channels above partly by a margin of bone and partly by a membrane. It receives its name from its termination at the tympanum, or middle ear, from which it is separated only by a thin membrane.(122) Both the scala vestibula and the scala tympani belong to the outer portion of the internal ear and are, for this reason, filled with the perilymph. At their upper ends they communicate with each other by a small opening, making by this means one continuous canal through the cochlea. This canal passes from the vestibule to the tympanum and, in so doing, goes entirely around *The Scala Media.*--This division of the cochlea lies parallel to and between the other two divisions. It is above the scala tympani and below the scala vestibula, and is separated from each by a membrane. The scala media belongs to the membranous portion of the internal ear and is, therefore, filled with the endolymph. It receives the terminations of fibers from the auditory nerve and may be regarded as the true sense organ of hearing. The nerve fibers terminate upon the membrane known as the _basilar membrane_, which separates it from the scala tympani. This membrane extends the length of the cochlear canals, and is stretched between a projecting shelf of bone on one side and the outer wall of the cochlea on the other. It is covered with a layer of epithelial cells, some of which have small, hair-like projections and are known as the _hair cells_. Above the membrane, and resting partly upon it, are two rows of rod-like bodies, called the _rods of Corti_. These, by leaning toward each other, form a kind of tunnel beneath. They are exceedingly numerous, numbering more than 6000, and form a continuous series along the margin of the membrane. [Fig. 154] Fig. 154--*Diagram* illustrating passage of sound waves through the ear. *How We Hear.*--The sound waves which originate in vibrating bodies are transmitted by the air to the external ear. Passing through the auditory canal, the waves strike against the membrana tympani, setting it into vibration. By the bridge of bones and the air within the middle ear the vibrations
PREV.   NEXT  
|<   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275  
276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   >>   >|  



Top keywords:

membrane

 

tympani

 
separated
 

partly

 
cochlea
 

portion

 

fibers

 
filled
 

continuous

 

internal


bodies

 

auditory

 

vestibula

 
middle
 

margin

 

vestibule

 
receives
 

tympanum

 

canals

 

channels


projections
 

setting

 
membrana
 
called
 

resting

 
covered
 

vibrations

 

projecting

 

epithelial

 

vibration


bridge

 

strike

 

originate

 
series
 

Diagram

 

passage

 

illustrating

 

stretched

 

numbering

 

numerous


tunnel

 

leaning

 
Passing
 

external

 

transmitted

 

vibrating

 

exceedingly

 

beneath

 

termination

 
places