FREE BOOKS

Author's List




PREV.   NEXT  
|<   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127  
128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   >>   >|  
hey are not so small as the regular nebulae, and not so resolvable. This is as, according to the hypothesis, it should be. The degree of condensation causing spiral movement, is a degree of condensation also implying masses of flocculi that are larger, and therefore more visible, than those existing in an earlier stage. Moreover, the forms of these spiral nebulae are quite in harmony with the explanation given. The curves of luminous matter which they exhibit, are _not_ such as would be described by discrete masses starting from a state of rest, and moving through a resisting medium to a common centre of gravity; but they _are_ such as would be described by masses having their movements modified by the rotation of the medium. In the centre of a spiral nebula is seen a mass both more luminous and more resolvable than the rest. Assume that, in process of time, all the spiral streaks of luminous matter which converge to this centre are drawn into it, as they must be; assume further, that the flocculi, or other discrete portions constituting these luminous streaks, aggregate into larger masses at the same time that they approach the central group, and that the masses forming this central group also aggregate into larger masses; and there will finally result a cluster of such larger masses, which will be resolvable with comparative ease. And, as the coalescence and concentration go on, the constituent masses will gradually become fewer, larger, brighter, and more densely collected around the common centre of gravity. See now how completely this inference agrees with observation. "The circular form is that which most commonly characterises resolvable nebulae," writes Arago. Resolvable nebulae, says Sir John Herschel, "are almost universally round or oval." Moreover, the centre of each group habitually displays a closer clustering of the constituent masses than the outer parts; and it is shown that, under the law of gravitation, which we now know extends to the stars, this distribution is _not_ one of equilibrium, but implies progressing concentration. While, just as we inferred that, according to circumstances, the extent to which aggregation has been carried must vary; so we find that, in fact, there are regular nebulae of all degrees of resolvability, from those consisting of innumerable minute masses, to those in which their numbers are smaller and the sizes greater, and to those in which there are a few large bodies wort
PREV.   NEXT  
|<   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127  
128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   >>   >|  



Top keywords:

masses

 

larger

 

nebulae

 
centre
 
luminous
 

spiral

 

resolvable

 

concentration

 
discrete
 

constituent


gravity
 

central

 

aggregate

 

common

 

streaks

 

medium

 

regular

 

flocculi

 
Moreover
 

degree


condensation

 

matter

 

habitually

 

displays

 

closer

 

clustering

 

Herschel

 

commonly

 

circular

 

observation


inference

 

agrees

 
characterises
 

writes

 

gravitation

 

Resolvable

 

universally

 
extends
 
resolvability
 

consisting


innumerable

 
degrees
 

minute

 

numbers

 
bodies
 
greater
 

smaller

 

carried

 

equilibrium

 

implies