FREE BOOKS

Author's List




PREV.   NEXT  
|<   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165  
166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   >>   >|  
of some millions of years, to destroy all traces of a place of intersection of their orbits, if it once existed. But if this be admitted why need the hypothesis be abandoned? Given such duration of the Solar System as is currently assumed, there seems no reason why lapse of a few millions of years should present any difficulty. The explosion may as well have taken place ten million years ago as at any more recent period. And whoever grants this must grant that the probability of the hypothesis has to be estimated from other data. As a preliminary to closer consideration, let us ask what may be inferred from the rate of discovery of the planetoids, and from the sizes of those most recently discovered. In 1878, Prof. Newcomb, arguing that "the preponderance of evidence is on the side of the number and magnitude being limited", says that "the newly discovered ones" "do not seem, on the average, to be materially smaller than those which were discovered ten years ago"; and further that "the new ones will probably be found to grow decidedly rare before another hundred are discovered". Now, inspection of the tables contained in the just-published fourth edition of Chambers' _Descriptive Astronomy_ (vol. I) shows that whereas the planetoids discovered in 1868 (the year Prof. Newcomb singles out for comparison) have an average magnitude of 11.56 those discovered last year (1888) have an average magnitude of 12.43. Further, it is observable that though more than ninety have been discovered since Prof. Newcomb wrote, they have by no means become rare: the year 1888 having added ten to the list, and having therefore maintained the average rate of the preceding ten years. If, then, the indications Prof. Newcomb names, had they arisen, would have implied a limitation of the number, these opposite indications imply that the number is unlimited. The reasonable conclusion appears to be that these minor planets are to be counted not by hundreds but by thousands; that more powerful telescopes will go on revealing still smaller ones; and that additions to the list will cease only when the smallness ends in invisibility. Commencing now to scrutinize the two hypotheses respecting the genesis of these multitudinous bodies, I may first remark concerning that of Laplace, that he might possibly not have propounded it had he known that instead of four such bodies there are hundreds, if not thousands. The supposition that they resulted from th
PREV.   NEXT  
|<   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165  
166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   >>   >|  



Top keywords:

discovered

 

average

 

Newcomb

 
magnitude
 

number

 

bodies

 

smaller

 

planetoids

 
indications
 

millions


thousands

 
hypothesis
 

hundreds

 
preceding
 

maintained

 

observable

 

comparison

 
singles
 

ninety

 

Further


respecting

 
hypotheses
 

genesis

 

multitudinous

 

scrutinize

 

invisibility

 
Commencing
 

remark

 
supposition
 

resulted


Laplace

 

possibly

 

propounded

 

smallness

 
unlimited
 
reasonable
 
conclusion
 

appears

 

opposite

 

limitation


arisen

 

implied

 
planets
 

additions

 

revealing

 

counted

 
powerful
 

telescopes

 

million

 

recent