FREE BOOKS

Author's List




PREV.   NEXT  
|<   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160  
161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   >>   >|  
quantity of heat than it would, did it commence at any ordinary temperature and had only to lose the heat consequent on contraction. That is to say, in estimating the past period during which solar emission of heat has been going on at a high rate, much must depend on the initial temperature assumed; and this may have been rendered intense by the proto-chemical changes which took place in early stages.[21] Respecting the future duration of the solar heat, there must also be differences between the estimates made according as we do or do not take into account the proto-chemical changes which possibly have still to take place. True as it may be that the quantity of heat to be emitted is measured by the quantity of motion to be lost, and that this must be the same whether the approximation of the molecules is effected by chemical unions, or by mutual gravitation, or by both; yet, evidently, everything must turn on the degree of condensation supposed to be eventually reached; and this must in large measure depend on the natures of the substances eventually formed. Though, by spectrum-analysis, platinum has recently been detected in the solar atmosphere, it seems clear that the metals of low molecular weights greatly predominate; and supposing the foregoing arguments to be valid, it may be inferred, as not improbable, that the compoundings and recompoundings by which the heavy-moleculed elements are produced, not hitherto possible in large measure, will hereafter take place; and that, as a result, the Sun's density will finally become very great in comparison with what it is now. I say "not hitherto possible in large measure", because it is a feasible supposition that they may be formed, and can continue to exist, only in certain outer parts of the Solar mass, where the pressure is sufficiently great while the heat is not too great. And if this be so, the implication is that the interior body of the Sun, higher in temperature than its peripheral layers, may consist wholly of the metals of low atomic weights, and that this may be a part cause of his low specific gravity; and a further implication is that when, in course of time, the internal temperature falls, the heavy-moleculed elements, as they severally become capable of existing in it, may arise: the formation of each having an evolution of heat as its concomitant.[22] If so, it would seem to follow that the amount of heat to be emitted by the Sun, and the length of the
PREV.   NEXT  
|<   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160  
161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   >>   >|  



Top keywords:
temperature
 

chemical

 

measure

 

quantity

 

metals

 
moleculed
 
formed
 

elements

 
emitted
 

eventually


hitherto

 

implication

 
weights
 

depend

 
continue
 

supposition

 
sufficiently
 
pressure
 

feasible

 

density


result

 

estimating

 

finally

 

comparison

 

period

 

formation

 

existing

 

severally

 

capable

 

evolution


follow

 
amount
 

length

 

concomitant

 

internal

 
layers
 

consist

 
wholly
 

peripheral

 
emission

interior
 

higher

 
atomic
 
gravity
 

specific

 

produced

 
motion
 

measured

 
commence
 

contraction