FREE BOOKS

Author's List




PREV.   NEXT  
|<   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98  
99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   >>   >|  
s employed for this kind of experiment in the Memoirs of the Academy for 1780, p. 355; and a description and plate of the same apparatus will be found in the third part of this work. With this apparatus, phosphorus, charcoal, and hydrogen gas, gave the following results: One pound of phosphorus melted 100 libs. of ice. One pound of charcoal melted 96 libs. 8 oz. One pound of hydrogen gas melted 295 libs. 9 oz. 3-1/2 gros. As a concrete acid is formed by the combustion of phosphorus, it is probable that very little caloric remains in the acid, and, consequently, that the above experiment gives us very nearly the whole quantity of caloric contained in the oxygen gas. Even if we suppose the phosphoric acid to contain a good deal of caloric, yet, as the phosphorus must have contained nearly an equal quantity before combustion, the error must be very small, as it will only consist of the difference between what was contained in the phosphorus before, and in the phosphoric acid after combustion. I have already shown in Chap. V. that one pound of phosphorus absorbs one pound eight ounces of oxygen during combustion; and since, by the same operation, 100 lib. of ice are melted, it follows, that the quantity of caloric contained in one pound of oxygen gas is capable of melting 66 libs. 10 oz. 5 gros 24 grs. of ice. One pound of charcoal during combustion melts only 96 libs. 8 oz. of ice, whilst it absorbs 2 libs. 9 oz. 1 gros 10 grs. of oxygen. By the experiment with phosphorus, this quantity of oxygen gas ought to disengage a quantity of caloric sufficient to melt 171 libs. 6 oz. 5 gros of ice; consequently, during this experiment, a quantity of caloric, sufficient to melt 74 libs. 14 oz. 5 gros of ice disappears. Carbonic acid is not, like phosphoric acid, in a concrete state after combustion but in the state of gas, and requires to be united with caloric to enable it to subsist in that state; the quantity of caloric missing in the last experiment is evidently employed for that purpose. When we divide that quantity by the weight of carbonic acid, formed by the combustion of one pound of charcoal, we find that the quantity of caloric necessary for changing one pound of carbonic acid from the concrete to the gasseous state, would be capable of melting 20 libs. 15 oz. 5 gros of ice. We may make a similar calculation with the combustion of hydrogen gas and the consequent formation of water. During the combustion of
PREV.   NEXT  
|<   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98  
99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   >>   >|  



Top keywords:
quantity
 
combustion
 
caloric
 
phosphorus
 

oxygen

 

experiment

 

contained

 

melted

 

charcoal

 

phosphoric


hydrogen

 

concrete

 

formed

 

apparatus

 

sufficient

 

capable

 

melting

 
absorbs
 
employed
 

carbonic


disappears

 

Carbonic

 
During
 

whilst

 

disengage

 

calculation

 
divide
 

weight

 

changing

 
gasseous

purpose

 
united
 

formation

 

requires

 
consequent
 

enable

 

evidently

 

similar

 

missing

 

subsist


results

 
probable
 
remains
 

Academy

 

Memoirs

 

description

 

operation

 

ounces

 

difference

 
suppose