FREE BOOKS

Author's List




PREV.   NEXT  
|<   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54  
55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   >>  
ence is one in the structure of the atomic elements. If one imagines them to be vortex-rings, they may differ in size, thickness, and rate of rotation; either of these might make all the observed difference between the elements, including their density. In the second way, density implies compactness of molecules. Thus if a cubic foot of air be compressed until it occupies but half a cubic foot, each cubic inch will have twice as many molecules in it as at first. The amount of air per unit volume will have been doubled, the weight will have been doubled, the amount of matter as determined by its weight will have been doubled, and consequently we say its density has been doubled. If a bullet or a piece of iron be hammered, the molecules are compacted closer together, and a greater number can be got into a cubic inch when so condensed. In this sense, then, density means the number of molecules in a unit of space, a cubic inch or cubic centimeter. There is implied in this latter case that the molecules do not occupy all the available space, that they may have varying degrees of closeness; in other words, matter is discontinuous, and therefore there may be degrees in density. THE ETHER HAS DENSITY. It is common to have the degree of density of the ether spoken of in the same way, and for the same reason, that its elasticity is spoken of. The rate of transmission of a physical disturbance, as of a pressure or a wave-motion in matter, is conditioned by its degree of density; that is, the amount of matter per cubic inch as determined by its weight; the greater the density the slower the rate. So if rate of speed and elasticity be known, the density may be computed. In this way the density of the ether has been deduced by noting the velocity of light. The enormous velocity is supposed to prove that its density is very small, even when compared with hydrogen. This is stated to be about equal to that of the air at the height of two hundred and ten miles above the surface of the earth, where the air molecules are so few that a molecule might travel for 60,000,000 miles without coming in collision with another molecule. In air of ordinary density, a molecule can on the average move no further than about the two-hundred-and-fifty-thousandth of an inch without such collision. It is plain the density of the ether is so far removed from the density of anything we can measure, that it is hardly comparable with such things. If, in
PREV.   NEXT  
|<   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54  
55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   >>  



Top keywords:

density

 

molecules

 
doubled
 

matter

 
molecule
 

weight

 

amount

 

determined

 

degrees

 

velocity


hundred

 

greater

 

number

 

elements

 

elasticity

 

degree

 

spoken

 

collision

 

things

 

reason


motion

 

slower

 

conditioned

 

comparable

 
supposed
 
transmission
 

pressure

 

physical

 

noting

 

disturbance


computed

 

enormous

 

deduced

 

height

 
travel
 
thousandth
 

average

 

coming

 

surface

 
ordinary

stated
 

hydrogen

 
measure
 
removed
 
compared
 
compactness
 

compressed

 

implies

 

including

 
occupies