FREE BOOKS

Author's List




PREV.   NEXT  
|<   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65  
66   67   68   69   70   71   72   >>  
ss of such a sort as to tend to set other magnets in it in new positions. If at a distance of ten feet there were a delicately-poised magnet needle, every change in the position of the magnet held in the hand would bring about a change in the position of the needle. If the position of the hand magnet were completely reversed, so the south pole faced where the north pole faced before, the field would have been completely reversed, and the poised needle would have been pushed by the field into an opposite position. If the needle were a hundred feet away, the change would have been the same except in amount. The same might be said if the two were a mile apart, or the distance of the moon or any other distance, for there is no limit to an ether magnetic field. Suppose the hand magnet to have its direction completely reversed once in a second. The whole field, and the direction of the stress, would necessarily be reversed as often. But this kind of change in stress is known by experiment to travel with the speed of light, 186,000 miles a second; the disturbance due to the change of position of the magnet will therefore be felt in some degree throughout space. In a second and a third of a second it will have reached the moon, and a magnet there will be in some measure affected by it. If there were an observer there with a delicate-enough magnet, he could be witness to its changes once a second for the same reason one in the room could. The only difference would be one of amount of swing. It is therefore theoretically possible to signal to the moon with a swinging magnet. Suppose again that the magnet should be swung twice a second, there would be formed two waves, each one half as long as the first. If it should swing ten times a second, then the waves would be one-tenth of 186,000 miles long. If in some mechanical way it could be rotated 186,000 times a second, the wave would be but one mile long. Artificial ways have been invented for changing this magnet field as many as 100 million times a second, and the corresponding wave is less than a foot long. The shape of a magnet does not necessarily make it weaker or stronger as a magnet, but if the poles are near together the magnetic field is denser between them than when they are separated. The ether stress is differently distributed for every change in the relative positions of the poles. A common U-magnet, if struck, will vibrate like a tuning-fork, and gives out a definite
PREV.   NEXT  
|<   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65  
66   67   68   69   70   71   72   >>  



Top keywords:

magnet

 

change

 
position
 

reversed

 
needle
 

stress

 

completely

 

distance

 

magnetic

 

Suppose


amount

 

direction

 

poised

 

positions

 

necessarily

 

swinging

 

invented

 

changing

 

rotated

 

formed


Artificial

 

mechanical

 

stronger

 

common

 
relative
 
distributed
 

separated

 

differently

 

struck

 

vibrate


definite

 

tuning

 

million

 

weaker

 
denser
 
signal
 

hundred

 

opposite

 

pushed

 
magnets

delicately
 

delicate

 
observer
 
measure
 
affected
 
witness
 

theoretically

 

difference

 

reason

 
reached