FREE BOOKS

Author's List




PREV.   NEXT  
|<   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43  
44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   >>   >|  
, or in volume, the specific gravity would be correspondingly lowered. We should therefore expect a low specific gravity in all anaemic conditions. Similarly with an increased number of corpuscles, and a high haemoglobin equivalent, an increase in the density of the total blood makes its appearance. Hammerschlag has found in a large number of experiments that the relation between the specific gravity and the amount of haemoglobin is much closer than between the specific gravity and the number of corpuscles. The former in fact is so constant that it may be represented by a table. Sp. gravity Quantity of Haemoglobin (Fleischl's method) 1033-1035 25-30% 1035-1038 30-35% 1038-1040 35-40% 1040-1045 40-45% 1045-1048 45-55% 1048-1050 55-65% 1050-1053 65-70% 1053-1055 70-75% 1055-1057 75-85% 1057-1060 85-95% In a paper which has quite recently appeared Diabella has investigated these relations very thoroughly, and his results partly correct, and partly confirm those of Hammerschlag. Diabella found from his comparative estimations that differences of 10% haemoglobin (Fleischl) correspond in general to differences of 4.46 per thousand in the specific gravity (Hammerschlag's method). Nevertheless with the same amount of haemoglobin, differences up to 13.5 per thousand are to be observed; and these departures are greater the richer the blood in haemoglobin. Regular differences exist between men and women; the latter have, with the same amount of haemoglobin, a specific gravity lower by 2 to 2.5. Should the parallelism between the number of red blood corpuscles and the amount of haemoglobin be considerably disturbed, the influence of the stroma of the red discs on the specific gravity of the blood will then be recognisable. Diabella calculates, that with the same amount of haemoglobin in two blood testings, the stroma may effect differences of 3-5 per thousand in the specific gravity. Hence the estimation of the specific gravity is often sufficient for the determination of the relative amount of haemoglobin of a blood. It is only in cases of nephritis and in circulatory disturbances, and in leukaemia, that the relations between specific gravity and quantity of haemoglobin are too much masked by other inf
PREV.   NEXT  
|<   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43  
44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   >>   >|  



Top keywords:

gravity

 

haemoglobin

 

specific

 

amount

 
differences
 

number

 

thousand

 

Hammerschlag

 

corpuscles

 

Diabella


method

 

Fleischl

 

relations

 
partly
 
stroma
 
Should
 

considerably

 

volume

 

parallelism

 

influence


disturbed

 

lowered

 

Nevertheless

 
correspondingly
 

observed

 

Regular

 
richer
 
greater
 

departures

 
nephritis

circulatory
 

relative

 
disturbances
 

leukaemia

 
masked
 

quantity

 

determination

 
calculates
 

recognisable

 

testings


effect

 
sufficient
 

estimation

 

expect

 
appearance
 

relation

 

experiments

 

density

 
increased
 

equivalent