FREE BOOKS

Author's List




PREV.   NEXT  
|<   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305  
306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   >>   >|  
ed in a small bay. As the process went on, the salts would become progressively more concentrated, and would be precipitated in great thickness. A final complete separation of the basin from the sea, for instance by the relative elevation of the land, might result in complete desiccation, and deposition of potassium-magnesium salts such as those found at Stassfurt (p. 113). Another suggestion to explain the thickness of some salt beds is that the salts in a very large basin of water may, as the water evaporated and the basin shrank, have been deposited in great thickness in a few small depressions of the basin. Other writers believe that certain thick salt deposits were formed in desert basins (with no necessary connection with the sea), through the extensive leaching of small quantities of salt from previous sediments, and its transportation by water to desert lakes, where it was precipitated as the lakes evaporated. Over a long period of time large amounts of salt could accumulate in the lakes, and thick deposits could result. Such hypotheses also explain those cases where common salt beds are unaccompanied by gypsum, since land streams can easily be conceived to have been carrying sodium chloride without appreciable calcium sulphate; in ocean waters, on the other hand, so far as known both calcium sulphate and sodium chloride are always present, and gypsum would be expected to accompany the common salt. A partial explanation of some great thicknesses found in salt beds is that these beds, especially when soaked with water, are highly plastic and incompetent under pressure. In the deformation of the enclosing rocks, the salt beds will flow somewhat like viscous liquids, and will become thinned on the limbs of the folds and correspondingly thickened on the crests and troughs. The salt deposits of the Gulf Coast of Texas and Louisiana should be referred to because of their exceptional features. They occur in low domes in Tertiary and more recent sands, limestones, and clays. Vertical thicknesses of a few thousand feet of salt have been found, but the structure is known only from drilling. In some of these domes are also found petroleum, gypsum, and sulphur (p. 110). No igneous rocks are known in the vicinity. It has been thought by some that the deposits were formed by hot waters ascending along fissures from underlying igneous rocks, and the upbowing of the rocks has been variously explained as due to the expan
PREV.   NEXT  
|<   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305  
306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   >>   >|  



Top keywords:

deposits

 

gypsum

 
thickness
 

evaporated

 
common
 

calcium

 

chloride

 
sulphate
 

waters

 

thicknesses


sodium

 

desert

 

formed

 
precipitated
 

complete

 

explain

 
result
 

igneous

 

thought

 

liquids


correspondingly
 

thinned

 
variously
 
viscous
 

deformation

 
soaked
 

highly

 

plastic

 

explanation

 

underlying


fissures

 

incompetent

 

thickened

 
enclosing
 

ascending

 

pressure

 

upbowing

 

explained

 

limestones

 

partial


recent

 

petroleum

 
Tertiary
 

drilling

 

structure

 

thousand

 

Vertical

 

sulphur

 

Louisiana

 
troughs