FREE BOOKS

Author's List




PREV.   NEXT  
|<   247   248   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271  
272   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   >>   >|  
ut 400 miles long. The ore bodies are in fissured zones in serpentine and Jurassic sediments, and are related in general to recent volcanic flows. A considerable amount of bituminous matter is found in the ores, and is believed to have been an agent in their precipitation. The Terlingua ores of Texas are found in similar fractured zones in Cretaceous shales and limestones associated with surface igneous flows. The occurrence of a few ore bodies in vertical shoots in limestone, apparently terminating upward at the base of an impervious shale, furnishes an additional argument for their formation by ascending waters. In the few deposits (_e. g._, those of Almaden, Spain, and of the deep mines of New Almaden and New Idria, California,) where there is no such clear relation to volcanic rocks as generally observed, but where the ores contain the same characteristic set of minerals, it is concluded that practically the same processes outlined above have been active in their formation; and that the volcanic source of the hot solutions either failed to reach the surface or has been removed by erosion. The same line of reasoning is carried a step further, and in many gold-quartz veins in volcanic rocks, where cinnabar and its associated minerals are present, it is believed that waters of a hot-spring nature have again been effective. Thus cinnabar, when taken with its customary associations, is regarded as a sort of geologic thermometer. In the weathering of mercury deposits, cinnabar behaves somewhat like the corresponding silver sulphide, argentite. In the oxide zone, native mercury and the chloride, calomel, are formed. In the Texas deposits a red oxide and a number of oxychlorides are also present. The carrying down of the mercury and its precipitation as secondary sulphide may have taken place in some deposits, but this process is unimportant in forming values. TIN ORES ECONOMIC FEATURES The largest use of tin is in the manufacture of tin-plate, which is employed in containers for food, oil, and other materials. Next in importance is its use in the making of solder and of babbitt or bearing metal. Tin is also a constituent of certain kinds of brass, bronze, and other alloys, such as white metal and type metal. Minor uses include the making of tinfoil, collapsible tubes, wire, rubber, and various chemicals. Tin oxide is used to some extent in white enameling of metal surfaces. Roughly a third of the tin cons
PREV.   NEXT  
|<   247   248   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271  
272   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   >>   >|  



Top keywords:

volcanic

 

deposits

 

cinnabar

 

mercury

 
making
 
Almaden
 

formation

 

waters

 

sulphide

 

present


minerals

 
bodies
 

precipitation

 

believed

 
surface
 

number

 
oxychlorides
 
formed
 
chloride
 

calomel


extent

 

carrying

 
chemicals
 

customary

 

secondary

 
enameling
 

native

 

geologic

 
behaves
 
weathering

surfaces
 

silver

 
thermometer
 
associations
 

argentite

 

regarded

 

Roughly

 

process

 
containers
 

bronze


alloys

 
employed
 

materials

 

babbitt

 

bearing

 

solder

 

importance

 

manufacture

 

collapsible

 

forming