FREE BOOKS

Author's List




PREV.   NEXT  
|<   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274  
275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   >>   >|  
mica, fluorite, topaz, tourmaline, and apatite. The wall rocks are usually strongly altered and in part are replaced by some of the above minerals, forming coarse-grained rocks which are called "greisen." The origin of cassiterite veins, in view of their universal association with granitic rocks, is evidently related to igneous intrusions. The occurrence of the veins in distinct fissures in the granite and in the surrounding contact-metamorphic zone indicates that the granite had consolidated before their formation, and that they represent a late stage in the cooling. The association with minerals containing fluorine and boron, and the intense alteration of the wall rocks, indicate that the temperature must have been very high. It is probable that the temperature was so high as to cause the solutions to be gaseous rather than liquid, and that what have been called "pneumatolytic" conditions prevailed; but evidence to decide this question is not at present available. The most important deposits of tin in veins are those of Bolivia, some of which are exceptionally rich. These are found in granitic rocks forming the core of the high Cordillera Real and in the adjacent intruded sediments, in narrow fissure veins and broader brecciated zones containing the typical ore and gangue minerals described above, and also, in many cases, silver-bearing sulphides (chiefly tetrahedrite). There appear to be all gradations in type from silver-free tin ores to tin-free silver ores, although the extremes are now believed to be rare. In the main the tin ores, with abundant tourmaline, appear to be more closely related to the coarse-grained granites, and to indicate intense conditions of heat and pressure, while the more argentiferous ores, with very little or no tourmaline, are found in relation to finer-grained quartz porphyries and even rhyolites, and seem to indicate less intense conditions at the time of deposition. The ores of the whole area, which is a few hundred miles long, have been supposed to represent a single genetic unit, and the sundry variations are believed to be local facies of a general mineralization. Processes of secondary enrichment have in places yielded large quantities of oxidized silver minerals and wood tin near the surface, with accumulations of ruby silver ores at greater depths. The only other vein deposits which are at present of consequence are those of Cornwall. Here batholiths of granite have been in
PREV.   NEXT  
|<   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274  
275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   >>   >|  



Top keywords:

silver

 

minerals

 
tourmaline
 

intense

 
grained
 

granite

 

conditions

 
represent
 

present

 

believed


temperature

 

deposits

 

called

 
association
 

coarse

 

forming

 
granitic
 

related

 

chiefly

 

tetrahedrite


pressure
 

argentiferous

 
rhyolites
 
bearing
 

sulphides

 
quartz
 

porphyries

 

relation

 

granites

 

extremes


apatite

 

gradations

 

fluorite

 
abundant
 

closely

 

surface

 

accumulations

 

oxidized

 

quantities

 

places


yielded

 

greater

 
Cornwall
 

batholiths

 

consequence

 

depths

 

enrichment

 

secondary

 

supposed

 
hundred