FREE BOOKS

Author's List




PREV.   NEXT  
|<   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229  
230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   >>   >|  
es; of Burma; and of many other places. They are all related to the earlier stages of the metamorphic cycle and occur in close genetic association with igneous activity. They include deposits in the body of igneous rocks,--in the form of well-defined veins, replacements along zones of fissuring and shearing, and disseminated masses,--as well as veins and replacements in the rocks, particularly in limestones, adjoining igneous intrusions. The deposits present a wide variety of shapes depending on the courses of the solutions by which they were formed. The materials of the ore minerals are believed to have been derived from the igneous rocks and to have been deposited by hot solutions. The source of the solutions--whether magmatic or meteoric--presents the same problems which have been discussed elsewhere (pp. 41-42). The ores are frequently mined to great depths. Because of their complexity they require involved processes of treatment to separate out the values. Ores of this nature have already been referred to in the discussion of the copper ores of Bingham and Butte, and will be referred to in connection with the zinc-lead-silver ores of Leadville, Colorado. Special reference may be made here to the Coeur d'Alene district of Idaho, which is the second largest producer of lead in the United States. The Coeur d'Alene deposits are almost unique in that they contain galena as vein-fillings and replacements in quartzite, with a gangue of siderite (iron carbonate). Quartzite (instead of limestone) is an unusual locus of replacement ores, and siderite is an unusual gangue. These ores are believed to owe their origin to acid igneous intrusives, because of the close association of the ores with some of these intrusives, and because of the content of high-temperature minerals. Some of the ore bodies are found far from intrusives, but it is supposed that in such cases further underground development may disclose the intrusives below the surface. Secondary concentration has been insignificant. In general, weathering of lead ores at the surface and secondary sulphide enrichment below are not so extensive as in the case of copper and zinc. Galena is fairly stable in the oxide zone, and even in moist climates it is found in the outcrop of many veins. Weathering removes the more soluble materials and concentrates the lead sulphide with the residual clay and other gangue. In some districts cerussite and a little anglesite are al
PREV.   NEXT  
|<   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229  
230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   >>   >|  



Top keywords:

igneous

 

intrusives

 

deposits

 

solutions

 

replacements

 

gangue

 
surface
 
believed
 

sulphide

 

materials


minerals

 

siderite

 

unusual

 

referred

 

copper

 

association

 

content

 

earlier

 

related

 
temperature

bodies

 

places

 

supposed

 

origin

 

carbonate

 

quartzite

 

fillings

 

galena

 
Quartzite
 

replacement


limestone

 

metamorphic

 

stages

 

development

 

outcrop

 
Weathering
 

removes

 

climates

 

soluble

 

anglesite


cerussite

 
districts
 

concentrates

 

residual

 

stable

 

fairly

 
general
 

weathering

 

insignificant

 
disclose