FREE BOOKS

Author's List




PREV.   NEXT  
|<   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187  
188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   >>   >|  
conditions. GEOLOGIC FEATURES Iron rarely exists in nature as a separate element. It occurs mainly in minerals which represent combinations of iron, oxygen, and water, the substances which make up iron rust. Very broadly, most of the iron ores might be crudely classified as iron rust. In detail this group is represented by several mineral varieties, principal among which are hematite (Fe_{2}O_{3}), magnetite (Fe_{3}O_{4}), and limonite (hydrated ferric oxide). Iron likewise combines with a considerable variety of substances other than oxygen; and some of these compounds, as for instance iron carbonate (siderite), iron silicate (chamosite, glauconite, etc.), and iron sulphide (pyrite), are locally mined as iron ores. While an ore of iron may consist dominantly of some one of the iron minerals, in few cases does it consist exclusively of one mineral. Most ores are mixtures of iron minerals. Fully nine-tenths of the iron production of the world comes from the so-called hematite ores, meaning ores in which hematite is the dominant mineral, though most of them contain other iron minerals in smaller quantities. About 5 per cent of the world's iron ores are magnetites, and the remainder are limonites and iron carbonates. Iron ores are represented in nearly all phases of the metamorphic cycle, but the principal commercial values have been produced by processes of weathering and sedimentation at and near the surface. =Sedimentary iron ores.= Over 90 per cent of the world's production of iron ore is from sedimentary rocks. The deposits consist in the main either of beds of iron ore which were originally deposited as such and have undergone little subsequent alteration, or of those altered portions of lean ferruginous beds which since their deposition have been enriched or concentrated sufficiently to form ores. A minor class of iron ores in sediments consists of deposits formed by secondary replacement of limestones by surface waters carrying iron in solution. 1. Deposits of the first class,--originally laid down in much their present form,--are usually either oolitic, _i. e._, containing great numbers of flat rounded grains of iron minerals like flaxseeds, or consist in large part of fossil fragments of sea shells, replaced by iron minerals. The Clinton ores of the Birmingham district, the Wabana ores of Newfoundland, the minette ores of the Lorraine district in central Europe, and the oolitic ores of northern Eng
PREV.   NEXT  
|<   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187  
188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   >>   >|  



Top keywords:
minerals
 
consist
 
mineral
 

hematite

 

represented

 

production

 

principal

 
originally
 

oolitic

 
oxygen

surface

 

district

 

substances

 

deposits

 
sedimentation
 

portions

 

enriched

 

weathering

 

deposition

 

ferruginous


values

 

produced

 

processes

 

altered

 
sedimentary
 
concentrated
 
Sedimentary
 

subsequent

 
alteration
 

undergone


deposited

 
solution
 
fossil
 

fragments

 
flaxseeds
 

numbers

 

rounded

 

grains

 

shells

 

replaced


central

 

Europe

 

northern

 
Lorraine
 

minette

 
Clinton
 

Birmingham

 

Wabana

 

Newfoundland

 

secondary