FREE BOOKS

Author's List




PREV.   NEXT  
|<   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191  
192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   >>   >|  
ss of sedimentary ores, the iron minerals are supposed to have been introduced as replacements of limestones subsequent to sedimentation. Such ores are not always easy to discriminate from ores resulting primarily from sedimentation. This class is represented by the high-grade deposits of Bilbao, Spain, Austrian deposits, and by smaller deposits in other countries. The Bilbao ores consist mainly of siderite, which near the surface has altered to large bodies of oxide minerals. They occur in limestones and shales and are not associated with igneous rocks. The deposits are believed to have been formed by ordinary surface waters carrying iron in solution, and depositing it in the form of iron carbonate as replacements of the limestones. The original source of the iron is believed to have been small quantities of iron minerals disseminated through the ordinary country rocks of the district. The action of surface waters, in thus concentrating the iron in certain localities which are favorable for precipitation, is similar to the formation of the lead and zinc ores of the Mississippi valley, referred to in the next chapter. Deposits formed in this manner may be roughly tabular and resemble bedded deposits, or they may be of very irregular shapes. The sedimentary iron ores in general evidently represent an advanced stage of katamorphism, and illustrate the tendency of this phase of the metamorphic cycle toward simplification and segregation of certain materials. The exact conditions of original sedimentation present one of the great unsolved problems of geology, referred to in Chapter III. =Iron ores associated with igneous rocks.= About five per cent of the world's production of iron ore is from bodies of magnetite formed in association with igneous rocks. These are dense, highly crystalline ores, in which the iron minerals are tightly locked up with silicates, quartz, and other minerals, suggestive of high temperature origin. The largest of these deposits is at Kiruna in northern Sweden; in fact this is the largest single deposit of high-grade ore of any kind yet known in the world. Here the magnetite forms a great tabular vertical body lying between porphyry and syenite. In the Adirondack Mountains of New York and in the highlands of New Jersey, magnetites are interbedded and infolded with gneisses, granites, and metamorphic limestones. In the western United States there are many magnetite deposits, not yet mined, at con
PREV.   NEXT  
|<   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191  
192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   >>   >|  



Top keywords:

deposits

 

minerals

 

limestones

 
formed
 

surface

 
magnetite
 

igneous

 

sedimentation

 

believed

 

tabular


ordinary

 

waters

 

largest

 

original

 

referred

 
sedimentary
 

bodies

 

metamorphic

 
replacements
 

Bilbao


highly

 

materials

 

association

 

crystalline

 

segregation

 

silicates

 

simplification

 
locked
 

tightly

 

conditions


present
 

problems

 
geology
 

Chapter

 

unsolved

 

production

 
quartz
 

Adirondack

 

Mountains

 

syenite


porphyry

 

highlands

 

interbedded

 

infolded

 
gneisses
 

magnetites

 

western

 
States
 

United

 

Jersey